forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
data_download.py
97 lines (81 loc) · 3.3 KB
/
data_download.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Downloads the UCI HIGGS Dataset and prepares train data.
The details on the dataset are in https://archive.ics.uci.edu/ml/datasets/HIGGS
It takes a while as it needs to download 2.8 GB over the network, process, then
store it into the specified location as a compressed numpy file.
Usage:
$ python data_download.py --data_dir=/tmp/higgs_data
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tempfile
# pylint: disable=g-bad-import-order
import numpy as np
import pandas as pd
from six.moves import urllib
from absl import app as absl_app
from absl import flags
import tensorflow as tf
from official.utils.flags import core as flags_core
URL_ROOT = "https://archive.ics.uci.edu/ml/machine-learning-databases/00280"
INPUT_FILE = "HIGGS.csv.gz"
NPZ_FILE = "HIGGS.csv.gz.npz" # numpy compressed file to contain "data" array.
def _download_higgs_data_and_save_npz(data_dir):
"""Download higgs data and store as a numpy compressed file."""
input_url = os.path.join(URL_ROOT, INPUT_FILE)
np_filename = os.path.join(data_dir, NPZ_FILE)
if tf.gfile.Exists(np_filename):
raise ValueError("data_dir already has the processed data file: {}".format(
np_filename))
if not tf.gfile.Exists(data_dir):
tf.gfile.MkDir(data_dir)
# 2.8 GB to download.
try:
tf.logging.info("Data downloading...")
temp_filename, _ = urllib.request.urlretrieve(input_url)
# Reading and parsing 11 million csv lines takes 2~3 minutes.
tf.logging.info("Data processing... taking multiple minutes...")
with gzip.open(temp_filename, "rb") as csv_file:
data = pd.read_csv(
csv_file,
dtype=np.float32,
names=["c%02d" % i for i in range(29)] # label + 28 features.
).as_matrix()
finally:
tf.gfile.Remove(temp_filename)
# Writing to temporary location then copy to the data_dir (0.8 GB).
f = tempfile.NamedTemporaryFile()
np.savez_compressed(f, data=data)
tf.gfile.Copy(f.name, np_filename)
tf.logging.info("Data saved to: {}".format(np_filename))
def main(unused_argv):
if not tf.gfile.Exists(FLAGS.data_dir):
tf.gfile.MkDir(FLAGS.data_dir)
_download_higgs_data_and_save_npz(FLAGS.data_dir)
def define_data_download_flags():
"""Add flags specifying data download arguments."""
flags.DEFINE_string(
name="data_dir", default="/tmp/higgs_data",
help=flags_core.help_wrap(
"Directory to download higgs dataset and store training/eval data."))
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
define_data_download_flags()
FLAGS = flags.FLAGS
absl_app.run(main)