-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnusc_3d_tracking.py
196 lines (170 loc) · 6.97 KB
/
nusc_3d_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import json
import time
from argparse import ArgumentParser
from collections import defaultdict
from configparser import ConfigParser
from pathlib import Path
import numpy as np
import tqdm
from nuscenes.nuscenes import NuScenes
from nuscenes.utils import splits
from tracking.detections import Detections
from tracking.tracker import Tracker
from utils import NuscenesObject, visualize_trajectories
CLASSES = [
"barrier",
"traffic_cone",
"bicycle",
"motorcycle",
"pedestrian",
"car",
"bus",
"construction_vehicle",
"trailer",
"truck",
]
def load_args_and_config():
parser = ArgumentParser()
parser.add_argument("config", type=str)
parser.add_argument("tag", type=str)
parser.add_argument("split", type=str)
parser.add_argument("--backward", action="store_true")
args = parser.parse_args()
config = ConfigParser()
config.read(args.config)
return args, config
def create_tracker(config: ConfigParser):
tracking_cfg = config["tracking"]
tracker = Tracker(
t_miss=tracking_cfg.getint("t_miss"),
t_miss_new=tracking_cfg.getint("t_miss_new"),
t_hit=tracking_cfg.getint("t_hit"),
match_algorithm=tracking_cfg["match_algorithm"],
aff_thresh=tracking_cfg.getfloat("dis_thresh"),
ang_thresh=tracking_cfg.getfloat("ang_thresh"),
app_thresh=tracking_cfg.getfloat("app_thresh"),
ent_ex_score=tracking_cfg.getfloat("ent_ex_score"),
app_m=tracking_cfg.getfloat("app_m"),
offline=tracking_cfg.getboolean("offline"),
p=tracking_cfg.getfloat("p"),
q=tracking_cfg.getfloat("q"),
ang_vel=tracking_cfg.getboolean("ang_vel"),
vel_reinit=tracking_cfg.getboolean("vel_reinit"),
sim_metric=tracking_cfg["sim_metric"],
)
return tracker
def get_num_passed_frames(frame, last_frame, backward):
if last_frame is None:
last_frame = int(frame)
num_passed_frames = 1
else:
if backward:
num_passed_frames = last_frame - int(frame)
last_frame -= num_passed_frames
else:
num_passed_frames = int(frame) - last_frame
last_frame += num_passed_frames
return last_frame, num_passed_frames
def main():
args, config = load_args_and_config()
tracker = create_tracker(config)
visualization_cfg = config["visualization"]
backward = args.backward
tracking_out_dir = Path(f"output/nuscenes/{args.split}/{args.tag}")
tracking_out_dir.mkdir(parents=True, exist_ok=True)
with open(tracking_out_dir / "config.ini", "w") as f:
config.write(f)
root = config["data"]["root_dir"]
nusc = NuScenes(version="v1.0-test" if "test" in args.split else "v1.0-trainval", dataroot=root, verbose=False)
scene_names = splits.test if "test" in args.split else splits.val
scenes = [x for x in nusc.scene if x["name"] in scene_names]
with open(Path(root) / "results_nusc_val.json", "r") as f:
det_results = json.load(f)
meta = det_results["meta"]
det_results = det_results["results"]
trk_results = []
det_results_in_scenes = {}
for scene in scenes:
print("==============================")
num_frames = scene["nbr_samples"]
for det_class in CLASSES:
scene_dets = []
sample_token = scene["first_sample_token"]
while sample_token:
sample_dict = nusc.get("sample", sample_token)
sample_dets = det_results[sample_token]
det_results_in_scenes[sample_token] = sample_dets
sample_dets = [
x for x in sample_dets if "detection_name" in x and x["detection_name"] == det_class
]
sample_dets = [NuscenesObject(x) for x in sample_dets]
dets = Detections(
np.array([x.to_box() for x in sample_dets]), sample_dets, None, None, None
)
scene_dets.append(dets)
sample_token = sample_dict["next"]
# init
tracker.reset()
offline_trajectories = {}
time_cost = 0
pbar = tqdm.tqdm(
list(reversed(range(num_frames))) if backward else range(num_frames)
)
pbar.set_description(f'{scene["name"]} {det_class}'.ljust(35))
for idx in pbar:
cur_good_dets = scene_dets[idx]
# Perfroms tracking for the current frame
start_time = time.time()
_, pred_boxes = tracker.predict()
matched, entry_dets, exit_trks, false_trks = tracker.associate(
pred_boxes, cur_good_dets
)
tracker.update(
matched, entry_dets, exit_trks, false_trks, cur_good_dets
)
online_trks, dead_tracks = tracker.track_management()
end_time = time.time()
time_cost += end_time - start_time
# Saves data to strings
if tracker.offline:
for trk in dead_tracks:
if trk.max_hits >= tracker.t_hit:
for obj in trk.objs:
obj.tracking_id = trk.id
offline_trajectories[trk.id] = (
[trk.boxes[::-1], trk.objs[::-1]]
if backward
else [trk.boxes, trk.objs]
)
else:
for trk in online_trks:
trk.obj.tracking_id = trk.id
trk_results.extend([trk.obj.serialize() for trk in online_trks])
if tracker.offline:
for trk in tracker.tracks:
if trk.max_hits >= tracker.t_hit:
for obj in trk.objs:
obj.tracking_id = trk.id
offline_trajectories[trk.id] = (
[trk.boxes[::-1], trk.objs[::-1]]
if backward
else [trk.boxes, trk.objs]
)
if visualization_cfg.getboolean("trajectory"):
visualize_trajectories(
trajectories=[
boxes for boxes, _ in offline_trajectories.values()
],
)
for _, objs in offline_trajectories.values():
trk_results.extend([obj.serialize() for obj in objs])
trk_results_dict = defaultdict(list)
for obj in trk_results:
trk_results_dict[obj["sample_token"]].append(obj)
trk_results = {"meta": meta, "results": trk_results_dict}
with open(tracking_out_dir / "results.json", "w") as f:
json.dump(trk_results, f)
with open("data/nuscenes/mini_val_results.json", "w") as f:
json.dump({"meta": meta, "results": det_results_in_scenes}, f)
if __name__ == "__main__":
main()