-
Notifications
You must be signed in to change notification settings - Fork 1
/
advection_solidbody_FCT_PDECO_alltime_eddie_drift_beta0_001.py
385 lines (297 loc) · 13.7 KB
/
advection_solidbody_FCT_PDECO_alltime_eddie_drift_beta0_001.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
from pathlib import Path
import os
import sys
import dolfin as df
from dolfin import dx
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sys
from helpers import *
matplotlib.use('Agg')
# ---------------------------------------------------------------------------
### PDE-constrained optimisation problem for the advection-diffusion equation
### with Flux-corrected transport method
# min_{u,v,a,b} 1/2*||u(T)-\hat{u}_T||^2 + beta/2*||c||^2 (norms in L^2)
# subject to:
# du/dt - eps*grad^2(u) + div( u (omega*w + c*m) ) = 0 in Ωx[0,T]
# dot(grad u, n) = 0 on ∂Ωx[0,T]
# du/dn = 0 on ∂Ωx[0,T]
# u(0) = u0(x) in Ω
# w = velocity/wind vector with the following properties:
# div (w) = 0 in Ωx[0,T]
# w \dot n = 0 on ∂Ωx[0,T]
# b = drift vector, e.g. (1,1)
# c = control variable, velocity of the drift
# Optimality conditions:
# du/dt - eps*grad^2(u) + w \dot grad(u)) = 0 in Ωx[0,T]
# -dp/dt - eps*grad^2 p - w \dot grad(p)= 0 in Ωx[0,T]
# dp/dn = du/dn = 0 on ∂Ωx[0,T]
# u(0) = u0(x) in Ω
# p(T) = hat{u}_T - u(T) in Ω
# gradient equation: beta*c - u*dot(m, grad(p)) = 0 in Ωx[0,T]
# ---------------------------------------------------------------------------
## Define the parameters
a1 = -1
a2 = 1
deltax = 0.1/2/2
intervals_line = round((a2-a1)/deltax)
beta = 0.001
# box constraints for c, exact solution is in [0,1]
c_upper = 5
c_lower = 0
e1 = 0.2
e2 = 0.3
k1 = 1
k2 = 1
# diffusion coefficient
eps = 0
om = np.pi/40
t0 = 0
dt = 0.001
T = 0.1
num_steps = round((T-t0)/dt)
tol = 10**-2 # !!!
example_name = 'gaussian'
folder_name = 'Gaussian_drift_025' # zero rotation
out_folder_name = f"adv_Gauss_drift_T{T}_beta{beta}_tol{tol}"
if not Path(out_folder_name).exists():
Path(out_folder_name).mkdir(parents=True)
# Initialize a square mesh
mesh = df.RectangleMesh(df.Point(a1, a1), df.Point(a2, a2), intervals_line, intervals_line)
V = df.FunctionSpace(mesh, 'CG', 1)
nodes = V.dim()
sqnodes = round(np.sqrt(nodes))
u = df.TrialFunction(V)
v = df.TestFunction(V)
X = np.arange(a1, a2 + deltax, deltax)
Y = np.arange(a1, a2 + deltax, deltax)
X, Y = np.meshgrid(X,Y)
show_plots = True
def u_init(x,y):
'''
Initialisation of the position of the solid body/Gaussian object at time zero.
Input = mesh grid (x,y = square 2D arrays with the same dimensions), time
'''
c = 20
d = 5
out = np.exp(-c *( x**2 + d*(y-1/3)**2))
print(f'Init. condition uses {c=}, {d=}')
return out
def velocity():
wind = df.Expression(('-x[1]','x[0]'), degree=4)
print(f'Velocity field is 1/om*(-y,x) with {om=}')
return 1/om*wind
drift = df.Constant(('1','1'))
rot = velocity()
vertextodof = df.vertex_to_dof_map(V)
boundary_nodes, boundary_nodes_dof = generate_boundary_nodes(nodes, vertextodof)
mesh.init(0, 1)
dof_neighbors = find_node_neighbours(mesh, nodes, vertextodof)
# ----------------------------------------------------------------------------
###############################################################################
################### Define the stationary matrices ###########################
###############################################################################
# Mass matrix
M = assemble_sparse_lil(u * v * dx)
M_diag = M.diagonal()
# Row-lumped mass matrix
M_Lump = row_lump(M,nodes)
# Stiffness matrix
Ad = assemble_sparse(dot(grad(u), grad(v)) * dx)
Arot = 0*Ad # defined to be zero (armijo needs Arot as an argument)
###############################################################################
########################### Initial guesses for GD ############################
#### ck: use np.ones to multiply drift by one
#### uk: use target states on all time steps
#### pk, dk: np.zeros
###############################################################################
vec_length = (num_steps + 1)*nodes # include zero and final time
u0_orig = u_init(X, Y).reshape(nodes)
# importing data in dof ordering
pk = np.zeros(vec_length)
dot_drift_grad_pk = np.zeros(vec_length)
ck = 1*np.ones(vec_length)
dk = np.zeros(vec_length)
u0 = reorder_vector_to_dof_time(u0_orig, 1, nodes, vertextodof)
uhat_all = np.zeros(vec_length)
uhat_all[:nodes] = u0
# Iterate through files '001.csv' to '099.csv'
for i in range(1, num_steps+1):
start = i * nodes
end = (i + 1) * nodes
t = i*dt
uhat_all[start : end] = np.genfromtxt(folder_name + '/' + example_name +
'_t' + f'{t:.3f}_u.csv', delimiter=',')
uhat_all_re = reorder_vector_from_dof_time(uhat_all, num_steps + 1, nodes, vertextodof)
uk = np.copy(uhat_all)
###############################################################################
###################### PROJECTED GRADIENT DESCENT #############################
###############################################################################
it = 0
cost_fun_k = 10*cost_functional(uk, uhat_all, ck, num_steps, dt, M, beta, optim='alltime')
cost_fun_vals = []
cost_fidelity_vals = []
cost_control_vals = []
stop_crit_costfun = 5
print(f'dx={deltax}, {dt=}, {T=}, {beta=}')
print('Starting projected gradient descent method...')
while (stop_crit_costfun >= tol) and it < 1:
it += 1
print(f'\n{it=}')
# In k-th iteration we solve for u^k, p^k using c^k (S1 & S2)
# and calculate c^{k+1} (S5)
###########################################################################
############### 1. solve the state equation using FCT #####################
###########################################################################
print('Solving state equation...')
t=0
uk[nodes:] = np.zeros(num_steps * nodes) # initialise uk, keep IC
for i in range(1, num_steps + 1): # solve for uk(t_{n+1})
start = i * nodes
end = (i + 1) * nodes
t += dt
if i % 50 == 0:
print('t = ', round(t, 4))
uk_n = uk[start - nodes : start] # uk(t_n), i.e. previous time step at k-th GD iteration
ck_np1_fun = vec_to_function(ck[start : end], V)
u_rhs = np.zeros(nodes)
Adrift1 = assemble_sparse(dot(drift, grad(ck_np1_fun))*u * v * dx) # pseudo-mass matrix
Adrift2 = assemble_sparse(dot(drift, grad(v)) * ck_np1_fun * u * dx) # pseudo-stiffness matrix
## System matrix for the state equation
A_u = - eps * Ad + Adrift1 + Adrift2
uk[start:end] = FCT_alg(A_u, u_rhs, uk_n, dt, nodes, M, M_Lump, dof_neighbors)
print(f'{L2_norm_sq_Q(uk - uhat_all, num_steps, dt, M)=}')
###########################################################################
############### 2. solve the adjoint equation using FCT ###################
###########################################################################
pk = np.zeros(vec_length)
dot_drift_grad_pk = np.zeros(vec_length)
t = T
print('Solving adjoint equation...')
for i in reversed(range(0, num_steps)):
start = i * nodes
end = (i + 1) * nodes
t -= dt
if i % 50 == 0:
print('t = ', round(t, 4))
pk_np1 = pk[end : end + nodes] # pk(t_{n+1})
uk_n_fun = vec_to_function(uk[start : end], V) # uk(t_n)
ck_n_fun = vec_to_function(ck[start : end], V)
uhat_n_fun = vec_to_function(uhat_all[start:end], V)
Adrift1 = assemble_sparse(dot(drift, grad(ck_n_fun))*u * v * dx) # pseudo-mass matrix
Adrift2 = assemble_sparse(dot(drift, grad(v)) * ck_n_fun * u * dx) # pseudo-stiffness matrix
A_p = - eps * Ad - Adrift1 - Adrift2
p_rhs = np.asarray(assemble((uhat_n_fun - uk_n_fun) * v * dx))
pk[start:end] = FCT_alg(A_p, p_rhs, pk_np1, dt, nodes, M, M_Lump, dof_neighbors)
###########################################################################
##################### 3. choose the descent direction #####################
###########################################################################
for i in range(num_steps + 1): # calculate dk, across all time steps (incl. 0 and T)
start = i * nodes
end = (i + 1) * nodes
uk_fun = vec_to_function(uk[start:end], V)
pk_fun = vec_to_function(pk[start:end], V)
rhs_dk = -(beta*M*ck[start:end] \
+ np.asarray(assemble(pk_fun * dot(drift, grad(uk_fun))*v*dx)))
dk[start:end] = ChebSI(rhs_dk, M, M_diag, 20, 0.5, 2)
###########################################################################
########################## 4. step size control ###########################
###########################################################################
print('Starting Armijo line search...')
sk, u_inc = armijo_line_search_sbr_drift(uk, pk, ck, dk, uhat_all, eps, drift,
num_steps, dt, nodes, M, M_Lump, Ad, Arot, c_lower, c_upper,
beta, V, dof_neighbors, optim='alltime')
###########################################################################
## 5. Calculate new control and project onto admissible set
###########################################################################
ckp1 = np.clip(ck + sk*dk,c_lower,c_upper)
cost_fun_kp1 = cost_functional(u_inc, uhat_all, ckp1, num_steps, dt, M, beta,
optim='alltime')
cost_fun_vals.append(cost_fun_kp1)
cost_fidelity_vals.append(L2_norm_sq_Q(u_inc - uhat_all, num_steps, dt, M))
cost_control_vals.append(L2_norm_sq_Q(ckp1, num_steps, dt, M))
stop_crit_costfun = np.abs(cost_fun_k - cost_fun_kp1) / np.abs(cost_fun_k)
cost_fun_k = cost_fun_kp1
ck = ckp1
print(f'{stop_crit_costfun=}')
uk_re = reorder_vector_from_dof_time(uk, num_steps + 1, nodes, vertextodof)
ck_re = reorder_vector_from_dof_time(ck, num_steps + 1, nodes, vertextodof)
pk_re = reorder_vector_from_dof_time(pk, num_steps + 1, nodes, vertextodof)
for i in range(num_steps):
startP = i * nodes
endP = (i+1) * nodes
tP = i * dt
startU = (i+1) * nodes
endU = (i+2) * nodes
tU = (i+1) * dt
u_re = uk_re[startU : endU]
c_re = ck_re[startP : endP]
p_re = pk_re[startP : endP]
uhat_all_re_t = uhat_all_re[startU : endU]
u_re = u_re.reshape((sqnodes,sqnodes))
c_re = c_re.reshape((sqnodes,sqnodes))
p_re = p_re.reshape((sqnodes,sqnodes))
uhat_all_re_t = uhat_all_re_t.reshape((sqnodes,sqnodes))
if show_plots is True and (i%10 == 0 or i==num_steps-1):
fig = plt.figure(figsize=(20, 5))
ax = fig.add_subplot(1, 4, 1)
im1 = ax.imshow(uhat_all_re_t)
cb1 = fig.colorbar(im1, ax=ax)
ax.set_title(f'{it=}, Desired state for $u$ at t = {round(tU, 5)}')
ax = fig.add_subplot(1, 4, 2)
im2 = ax.imshow(u_re)
cb2 = fig.colorbar(im2, ax=ax)
ax.set_title(f'Computed state $u$ at t = {round(tU, 5)}')
ax = fig.add_subplot(1, 4, 3)
im3 = ax.imshow(p_re)
cb3 = fig.colorbar(im3, ax=ax)
ax.set_title(f'Computed adjoint $p$ at t = {round(tP, 5)}')
ax = fig.add_subplot(1, 4, 4)
im4 = ax.imshow(c_re)
cb4 = fig.colorbar(im4, ax=ax)
ax.set_title(f'Computed control $c$ at t = {round(tP, 5)}')
fig.tight_layout(pad=3.0)
plt.savefig(out_folder_name + f'/it_{it}_plot_{i:03}.png')
# Clear and remove objects explicitly
# ax.clear() # Clear axes
# cb1.remove() # Remove colorbars
# cb2.remove()
# cb3.remove()
# cb4.remove()
del im1, im2, im3, im4, cb1, cb2, cb3, cb4
fig.clf()
plt.close(fig)
if it > 1:
fig2 = plt.figure(figsize=(15, 5))
ax2 = fig2.add_subplot(1, 3, 1)
im1 = plt.plot(np.arange(1, it + 1), cost_fun_vals)
plt.title(f'{it=} Cost functional')
ax2 = fig2.add_subplot(1, 3, 2)
im2 = plt.plot(np.arange(1, it + 1), cost_fidelity_vals)
plt.title('Data fidelity norm in L2(Omega)^2')
ax2 = fig2.add_subplot(1, 3, 3)
im3 = plt.plot(np.arange(1, it + 1), cost_control_vals)
plt.title('Regularisation norm in L2(Q)^2')
fig2.tight_layout(pad=3.0)
plt.savefig(out_folder_name + f'/progress_it_{it}.png')
# Clear and remove objects explicitly
# ax2.clear() # Clear axes
del im1, im2, im3
fig2.clf()
plt.close(fig2)
max_ck = []
for i in range(num_steps):
start = i * nodes
end = (i+1) * nodes
max_ck.append(np.amax(ck[start:end]))
np.mean(max_ck)
print('Mean of the control in L_2(Omega) squared:', np.mean(max_ck))
print('Square root of the mean: ', np.sqrt(np.mean(max_ck)))
###############################################################################
uk.tofile(out_folder_name + f'/gaussian_T{T}_beta{beta}_u.csv', sep = ',')
ck.tofile(out_folder_name + f'/gaussian_T{T}_beta{beta}_c.csv', sep = ',')
pk.tofile(out_folder_name + f'/gaussian_T{T}_beta{beta}_p.csv', sep = ',')
print(f'Exit:\n Stop. crit.: {stop_crit_costfun}\n Iterations: {it}\n dx={deltax}')
print(f'{dt=}, {T=}, {beta=}')
print(f'Output saved to:', out_folder_name)