-
Notifications
You must be signed in to change notification settings - Fork 1
/
Schnak_FCT_PDECO.py
480 lines (382 loc) · 19.2 KB
/
Schnak_FCT_PDECO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
from pathlib import Path
from dolfin import *
import numpy as np
import matplotlib.pyplot as plt
from helpers import *
# ---------------------------------------------------------------------------
### Flux-corrected transport method for the PDECO problem for the Schnakenberg model
# min_{u,v,a,b} beta1/2*||u-\hat{u}||^2 + beta2/2*||v-\hat{v}||^2 + alpha1/2*||a||^2 + alpha2/2*||b||^2 (norms in L^2)
# subject to:
# du/dt - Du grad^2 u + om1 w \cdot grad(u) + gamma(u-u^2v-a) = 0 in Ω
# dv/dt - Dv grad^2 v + om2 w \cdot grad(v) + gamma(u^2v-b) = 0 in Ω
# zero flux BCs on ∂Ω
# u(0) = u0(x) in Ω
# w = velocity/wind vector with the following properties:
# div (w) = 0 in Ωx[0,T]
# ---------------------------------------------------------------------------
## Define the parameters
a1 = 0
a2 = 1
deltax = 0.01*2
intervals_line = round((a2 - a1) / deltax)
beta = 0.1
# box constraints for c, exact solution is in [0,1]
c_upper = 0.5
c_lower = 0
Du = 1/100
Dv = 8.6676
c_a = 0.1
c_b = 0.9
gamma = 230.82
omega1 = 100
omega2 = 0.6
t0 = 0
dt = 0.001*2
T = 0.2
T_data = 0.2
num_steps = round((T-t0)/dt)
tol = 10**-4 #5*10**-3 # !!!
example_name = f"Schnak_adv_Du{Du}_timedep_vel_coarse/Schnak_adv"
out_folder_name = f"Schnak_adv_FT_Du{Du}_timedep_vel_T{T}_beta{beta}_tol{tol}_ckinit_0.1_cupper{c_upper}pert_coarse_Nt100_v1"
if not Path(out_folder_name).exists():
Path(out_folder_name).mkdir(parents=True)
wind = Expression(('-(x[1]-0.5)*sin(2*pi*t)','(x[0]-0.5)*sin(2*pi*t)'), degree=4, pi = np.pi, t = 0)
show_plots = True
# Initialize a square mesh
mesh = RectangleMesh(Point(a1, a1), Point(a2, a2), intervals_line, intervals_line)
V = FunctionSpace(mesh, 'CG', 1)
nodes = V.dim()
sqnodes = round(np.sqrt(nodes))
X = np.arange(a1, a2 + deltax, deltax)
Y = np.arange(a1, a2 + deltax, deltax)
X, Y = np.meshgrid(X,Y)
u = TrialFunction(V)
w = TestFunction(V)
W = VectorFunctionSpace(mesh, "CG", 1)
wind_fun = Function(W)
wind_fun = project(wind, W)
vertextodof = vertex_to_dof_map(V)
boundary_nodes, boundary_nodes_dof = generate_boundary_nodes(nodes, vertextodof)
mesh.init(0, 1)
dof_neighbors = find_node_neighbours(mesh, nodes, vertextodof)
np.random.seed(5)
###############################################################################
################### Define the stationary matrices ###########################
###############################################################################
# Mass matrix
M = assemble_sparse_lil(u * w * dx)
# Row-lumped mass matrix
M_Lump = row_lump(M, nodes)
# Stiffness matrix
Ad = assemble_sparse(dot(grad(u), grad(w)) * dx)
###############################################################################
################ Target states & initial conditions for m,f ###################
###############################################################################
def init_conditions(X,Y):
'''
Function for the initial conditions.
Input = mesh grid (X,Y) = square 2D arrays with the same dimensions).
'''
con = 0.1
u_init = c_a + c_b + con * np.cos(2 * np.pi * (X + Y)) + \
0.01 * (sum(np.cos(2 * np.pi * X * i) for i in range(1, 9)))
v_init = c_b / pow(c_a + c_b, 2) + con * np.cos(2 * np.pi * (X + Y)) + \
0.01 * (sum(np.cos(2 * np.pi * X * i) for i in range(1, 9)))
return u_init, v_init
u0_orig, v0_orig = init_conditions(X, Y)
u0 = reorder_vector_to_dof_time(u0_orig.reshape(nodes), 1, nodes, vertextodof)
v0 = reorder_vector_to_dof_time(v0_orig.reshape(nodes), 1, nodes, vertextodof)
# uhat_T = np.zeros(nodes)
# vhat_T = np.zeros(nodes)
uhat_T = np.genfromtxt(example_name + f'_uT{T_data:03}.csv', delimiter=',')
vhat_T = np.genfromtxt(example_name + f'_vT{T_data:03}.csv', delimiter=',')
uhat_T_re = reorder_vector_from_dof_time(uhat_T, 1, nodes, vertextodof).reshape((sqnodes,sqnodes))
vhat_T_re = reorder_vector_from_dof_time(vhat_T, 1, nodes, vertextodof).reshape((sqnodes,sqnodes))
###############################################################################
########################### Initial guesses for GD ############################
###############################################################################
vec_length = (num_steps + 1)*nodes # include zero and final time
uk = np.zeros(vec_length)
vk = np.zeros(vec_length)
pk = np.zeros(vec_length)
qk = np.zeros(vec_length)
ck = 0.1*np.ones(vec_length) + 0.01*(np.random.rand(vec_length)-0.5) #np.zeros(vec_length)
dk = np.zeros(vec_length)
uk[:nodes] = u0
vk[:nodes] = v0
sk = 0
###############################################################################
###################### PROJECTED GRADIENT DESCENT #############################
###############################################################################
it = 0
cost_fun_k = 10*cost_functional(uk, uhat_T, ck, num_steps, dt, M, beta,
var2 = vk, var2_target = vhat_T,
optim='finaltime')
cost_fun_vals = []
cost_fidelity_vals_u = []
cost_fidelity_vals_v = []
cost_control_vals = []
mean_control_vals = []
stop_crit = 5
print(f'dx={deltax}, {dt=}, {T=}, {beta=}')
print('Starting projected gradient descent method...')
while stop_crit >= tol and it<1000:
it += 1
print(f'\n{it=}')
# In k-th iteration we solve for f^k, m^k, q^k, p^k using c^k (S1 & S2)
# and calculate c^{k+1} (S5)
###########################################################################
############## Solve the state equations using FCT for m ##################
###########################################################################
print('Solving state equations...')
t = 0
# initialise m,f and keep ICs
uk[nodes :] = np.zeros(num_steps * nodes)
vk[nodes :] = np.zeros(num_steps * nodes)
for i in range(1, num_steps + 1): # solve for uk(t_{n+1}), vk(t_{n+1})
start = i * nodes
end = (i + 1) * nodes
t += dt
wind.t = t
if i % 50 == 0:
print('t = ', round(t, 4))
u_n = uk[start - nodes : start]
v_n = vk[start - nodes : start]
c_np1 = ck[start : end]
# Define previous time-step solution as a function
u_n_fun = vec_to_function(u_n, V)
v_n_fun = vec_to_function(v_n, V)
c_np1_fun = vec_to_function(c_np1, V)
# Solve for u using FCT (advection-dominated equation)
A = assemble_sparse(dot(wind, grad(u)) * w * dx)
mat_u = -(Du*Ad + omega1*A)
rhs_u = np.asarray(assemble((gamma*(c_np1_fun + u_n_fun**2 * v_n_fun))* w * dx))
uk[start : end] = FCT_alg(mat_u, rhs_u, u_n, dt, nodes, M, M_Lump, dof_neighbors, source_mat=gamma*M)
u_np1_fun = vec_to_function(uk[start : end], V)
M_u2 = assemble_sparse(u_np1_fun * u_np1_fun * u * w *dx)
# Solve for v using a direct solver
rhs_v = np.asarray(assemble((gamma*c_b)* w * dx))
vk[start : end] = spsolve(M + dt*(Dv*Ad + omega2*A + gamma*M_u2), M@v_n + dt*rhs_v)
# # v2: different weak formulation for advection matrix (corresponding signs also change)
# # Solve for u using FCT (advection-dominated equation)
# A = assemble_sparse(dot(wind, grad(w)) * u * dx)
# mat_u = -(Du*Ad - omega1*A)
# rhs_u = np.asarray(assemble((gamma*(c_np1_fun + u_n_fun**2 * v_n_fun))* w * dx))
# uk[start : end] = FCT_alg(mat_u, rhs_u, u_n, dt, nodes, M, M_Lump, dof_neighbors, source_mat=gamma*M)
# u_np1_fun = vec_to_function(uk[start : end], V)
# M_u2 = assemble_sparse(u_np1_fun * u_np1_fun * u * w *dx)
# # Solve for v using a direct solver
# rhs_v = np.asarray(assemble((gamma*c_b)* w * dx))
# vk[start : end] = spsolve(M + dt*(Dv*Ad - omega2*A + gamma*M_u2), M@v_n + dt*rhs_v)
###########################################################################
############## Solve the adjoint equations using FCT for p ################
###########################################################################
qk = np.zeros(vec_length)
pk = np.zeros(vec_length)
# insert final-time condition
qk[num_steps * nodes :] = vhat_T - vk[num_steps * nodes :]
pk[num_steps * nodes :] = uhat_T - uk[num_steps * nodes :]
t = T
print('Solving adjoint equations...')
for i in reversed(range(0, num_steps)): # solve for pk(t_n), qk(t_n)
start = i * nodes
end = (i + 1) * nodes
t -= dt
if i % 50 == 0:
print('t = ', round(t, 4))
q_np1 = qk[end : end + nodes] # qk(t_{n+1})
p_np1 = pk[end : end + nodes] # pk(t_{n+1})
p_np1_fun = vec_to_function(p_np1, V)
q_np1_fun = vec_to_function(q_np1, V)
u_n_fun = vec_to_function(uk[start : end], V) # uk(t_n)
v_n_fun = vec_to_function(vk[start : end], V) # vk(t_n)
c_n_fun = vec_to_function(ck[start : end], V) # ck(t_n)
wind.t = t
wind_fun = project(wind, W)
## Approach 1: first solve for p, then for q
### needs to be fixed
# mat_p = -Du*Ad + omega1*A
# rhs_p = np.asarray(assemble(2 * gamma * u_n_fun * v_n_fun * (p_np1_fun - q_np1_fun) * w * dx))
# pk[start:end] = FCT_alg(mat_p, rhs_p, p_np1, dt, nodes, M, M_Lump, dof_neighbors, source_mat=gamma*M)
# p_np1_fun = vec_to_function(pk[end : end + nodes], V)
# rhs_q = np.asarray(assemble(gamma * p_np1_fun * u_n_fun**2 * w * dx))
# qk[start:end] = spsolve(M + dt*(Dv*Ad - omega2*A + gamma*M_u2), M@q_np1 + dt*rhs_q)
# Approach 2: first solve for q, then for p
A = assemble_sparse(div(wind_fun*u) * w * dx)
M_u2 = assemble_sparse(u_n_fun * u_n_fun * u * w *dx)
rhs_q = np.asarray(assemble(gamma * p_np1_fun * u_n_fun**2 * w * dx))
qk[start:end] = spsolve(M + dt*(Dv*Ad - omega2*A + gamma*M_u2), M@q_np1 + dt*rhs_q)
q_n_fun = vec_to_function(qk[start:end], V)
mat_p = -Du*Ad + omega1*A
M_uv = assemble_sparse(u_n_fun * v_n_fun * u * w *dx)
rhs_p = np.asarray(assemble(- 2 * gamma * u_n_fun * v_n_fun * q_n_fun * w * dx))
pk[start:end] = FCT_alg(mat_p, rhs_p, p_np1, dt, nodes, M, M_Lump,
dof_neighbors, source_mat=gamma*M - 2*gamma*M_uv)
# ## Approach 2 v2: first solve for q, then for p & different weak formulation for advection matrix (signs don't change)
# A = assemble_sparse(dot(wind, grad(u)) * w * dx)
# M_u2 = assemble_sparse(u_n_fun * u_n_fun * u * w *dx)
# rhs_q = np.asarray(assemble(gamma * p_np1_fun * u_n_fun**2 * w * dx))
# qk[start:end] = spsolve(M + dt*(Dv*Ad - omega2*A + gamma*M_u2), M@q_np1 + dt*rhs_q)
# q_n_fun = vec_to_function(qk[start:end], V)
# mat_p = -Du*Ad + omega1*A
# M_uv = assemble_sparse(u_n_fun * v_n_fun * u * w *dx)
# rhs_p = np.asarray(assemble(- 2 * gamma * u_n_fun * v_n_fun * q_n_fun * w * dx))
# pk[start:end] = FCT_alg(mat_p, rhs_p, p_np1, dt, nodes, M, M_Lump,
# dof_neighbors, source_mat=gamma*M - 2*gamma*M_uv)
###########################################################################
##################### 3. choose the descent direction #####################
###########################################################################
dk = -(beta * ck - gamma * pk)
###########################################################################
########################## 4. step size control ###########################
###########################################################################
print(f'{cost_fun_k=}')
print('Starting Armijo line search...')
sk, u_inc, v_inc = armijo_line_search(uk, ck, dk, uhat_T, num_steps, dt, M,
c_lower, c_upper, beta, cost_fun_k, nodes, V = V,
optim = 'finaltime', dof_neighbors= dof_neighbors,
example = 'Schnak', var2 = vk, var2_target = vhat_T)
###########################################################################
## 5. Calculate new control and project onto admissible set
###########################################################################
ckp1 = np.clip(ck + sk*dk,c_lower,c_upper)
cost_fun_kp1 = cost_functional(u_inc, uhat_T, ckp1, num_steps, dt, M, beta,
optim='finaltime', var2 = v_inc, var2_target=vhat_T)
print(f'{cost_fun_kp1=}')
cost_fun_vals.append(cost_fun_kp1)
cost_fidelity_vals_u.append(L2_norm_sq_Omega(u_inc[num_steps*nodes:] - uhat_T, M))
cost_fidelity_vals_v.append(L2_norm_sq_Omega(v_inc[num_steps*nodes:] - vhat_T, M))
cost_control_vals.append(L2_norm_sq_Q(ckp1, num_steps, dt, M))
max_ck = []
for i in range(num_steps):
start = i * nodes
end = (i+1) * nodes
max_ck.append(np.amax(ck[start:end]))
print('Mean of the control maxima over time steps:', np.mean(max_ck))
mean_control_vals.append(np.mean(max_ck))
stop_crit = np.abs(cost_fun_k - cost_fun_kp1) / np.abs(cost_fun_k)
cost_fun_k = cost_fun_kp1
ck = ckp1
print(f'{stop_crit=}')
uk_re = reorder_vector_from_dof_time(uk, num_steps + 1, nodes, vertextodof)
vk_re = reorder_vector_from_dof_time(vk, num_steps + 1, nodes, vertextodof)
ck_re = reorder_vector_from_dof_time(ck, num_steps + 1, nodes, vertextodof)
pk_re = reorder_vector_from_dof_time(pk, num_steps + 1, nodes, vertextodof)
qk_re = reorder_vector_from_dof_time(qk, num_steps + 1, nodes, vertextodof)
for i in range(num_steps):
startP = i * nodes
endP = (i+1) * nodes
tP = i * dt
startU = (i+1) * nodes
endU = (i+2) * nodes
tU = (i+1) * dt
u_re = uk_re[startU : endU]
v_re = vk_re[startU : endU]
c_re = ck_re[startP : endP]
p_re = pk_re[startP : endP]
q_re = qk_re[startP : endP]
u_re = u_re.reshape((sqnodes,sqnodes))
v_re = v_re.reshape((sqnodes,sqnodes))
c_re = c_re.reshape((sqnodes,sqnodes))
p_re = p_re.reshape((sqnodes,sqnodes))
q_re = q_re.reshape((sqnodes,sqnodes))
if show_plots is True and (i%5 == 0 or i == num_steps-1):
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(2, 4, 1)
im1 = ax.imshow(uhat_T_re)
cb1 = fig.colorbar(im1, ax=ax)
ax.set_title(f'{it=}, Desired state for $u$ at t = {T}')
ax = fig.add_subplot(2, 4, 2)
im2 = ax.imshow(u_re)
cb2 = fig.colorbar(im2, ax=ax)
ax.set_title(f'Computed state $u$ at t = {round(tU, 5)}')
ax = fig.add_subplot(2, 4, 3)
im3 = ax.imshow(p_re)
cb3 = fig.colorbar(im3, ax=ax)
ax.set_title(f'Computed adjoint $p$ at t = {round(tP, 5)}')
ax = fig.add_subplot(2, 4, 4)
im4 = ax.imshow(c_re)
cb4 = fig.colorbar(im4, ax=ax)
ax.set_title(f'Computed control $c$ at t = {round(tP, 5)}')
ax = fig.add_subplot(2, 4, 5)
im5 = ax.imshow(vhat_T_re)
cb5 = fig.colorbar(im1, ax=ax)
ax.set_title(f'{it=}, Desired state for $v$ at t = {T}')
ax = fig.add_subplot(2, 4, 6)
im6 = ax.imshow(v_re)
cb6 = fig.colorbar(im2, ax=ax)
ax.set_title(f'Computed state $v$ at t = {round(tU, 5)}')
ax = fig.add_subplot(2, 4, 7)
im7 = ax.imshow(q_re)
cb7 = fig.colorbar(im3, ax=ax)
ax.set_title(f'Computed adjoint $q$ at t = {round(tP, 5)}')
fig.tight_layout(pad=3.0)
plt.savefig(out_folder_name + f'/it_{it}_plot_{i:03}.png')
# Clear and remove objects explicitly
ax.clear() # Clear axes
cb1.remove() # Remove colorbars
cb2.remove()
cb3.remove()
cb4.remove()
cb5.remove()
cb6.remove()
cb7.remove()
del im1, im2, im3, im4, im5, im6, im7, cb1, cb2, cb3, cb4, cb5, cb6, cb7
fig.clf()
plt.close(fig)
if it > 1:
fig2 = plt.figure(figsize=(15, 5))
ax2 = fig2.add_subplot(1, 3, 1)
im1 = plt.plot(np.arange(1, it + 1), cost_fun_vals)
plt.title(f'{it=} Cost functional')
ax2 = fig2.add_subplot(1, 3, 2)
im2_u = plt.plot(np.arange(1, it + 1), cost_fidelity_vals_u, label='for u')
im2_v = plt.plot(np.arange(1, it + 1), cost_fidelity_vals_v, label='for v')
plt.title('Data fidelity norms in L2(Omega)^2')
plt.legend()
ax2 = fig2.add_subplot(1, 3, 3)
im3 = plt.plot(np.arange(1, it + 1), cost_control_vals)
plt.title('Regularisation norm in L2(Q)^2')
fig2.tight_layout(pad=3.0)
plt.savefig(out_folder_name + f'/progress_plot.png')
# Clear and remove objects explicitly
ax2.clear() # Clear axes
del im1, im2_u, im2_v, im3
fig2.clf()
plt.close(fig2)
fig3 = plt.figure()
im4 = plt.plot(np.arange(1, it + 1), mean_control_vals)
plt.title('Mean of the max across time of the control at each iteration')
plt.savefig(out_folder_name + f'/control_means_plot.png')
# Clear and remove objects explicitly
del im4
fig3.clf()
plt.close(fig3)
###############################################################################
# # Mapping to order the solution vectors based on vertex indices
uk_re = reorder_vector_from_dof_time(uk, num_steps + 1, nodes, vertextodof)
vk_re = reorder_vector_from_dof_time(vk, num_steps + 1, nodes, vertextodof)
ck_re = reorder_vector_from_dof_time(ck, num_steps + 1, nodes, vertextodof)
pk_re = reorder_vector_from_dof_time(pk, num_steps + 1, nodes, vertextodof)
qk_re = reorder_vector_from_dof_time(qk, num_steps + 1, nodes, vertextodof)
uk.tofile(out_folder_name + f'/Schnak_adv_T{T}_beta{beta}_u.csv', sep = ',')
vk.tofile(out_folder_name + f'/Schnak_adv_T{T}_beta{beta}_v.csv', sep = ',')
ck.tofile(out_folder_name + f'/Schnak_adv_T{T}_beta{beta}_c.csv', sep = ',')
pk.tofile(out_folder_name + f'/Schnak_adv_T{T}_beta{beta}_p.csv', sep = ',')
qk.tofile(out_folder_name + f'/Schnak_adv_T{T}_beta{beta}_q.csv', sep = ',')
print(f'Exit:\n Stop. crit.: {stop_crit}\n Iterations: {it}\n dx={deltax}')
print(f'{dt=}, {T=}, {beta=}')
print('Solutions saved to the folder:', out_folder_name)
print('L2_\Omega^2 (u(T) - uhat_T)=', L2_norm_sq_Omega(uk[num_steps*nodes]-uhat_T,M))
print('L2_\Omega^2 (v(T) - vhat_T)=', L2_norm_sq_Omega(vk[num_steps*nodes]-vhat_T,M))
print('Max. of the control at final time step:', np.amax(ck[num_steps*nodes:]))
print('Min. of the control at final time step:', np.amin(ck[num_steps*nodes:]))
print('Mean of the control at final time step:', np.mean(ck[num_steps*nodes:]))
means_ck = []
for i in range(num_steps):
start = i * nodes
end = (i+1) * nodes
means_ck.append(np.mean(ck[start:end]))
plt.plot(means_ck)
plt.title('Mean of c at each time step, final iteration')
plt.show()