forked from gigahidjrikaaa/Traffic-Simulation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
283 lines (204 loc) · 7.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
from trafficSim import *
import csv
sim = Simulation()
# Play with these
n = 15 # Iterations for road turns
a = 2 # Indicates start node point a
b = 12 # Indicates end node point b
l = 300 # Length of road
NUM_OF_ROADS = 36 # Number of roads
VEHICLE_RATE = 400 # Vehicle spawn rate per minute
STEPS_PER_UPDATE = 1 # Number of steps per update
# coordinate y is opposite
# Nodes
WEST_RIGHT_START = (-b-l, a) # -13, 2
WEST_LEFT_END = (-b-l, -a) # -13, -2
SOUTH_RIGHT_START = (a, b+l) # 2, 13
SOUTH_LEFT_END = (-a, b+l) # -2, 13
EAST_RIGHT_START = (b+l, -a) # 13, -2
EAST_LEFT_END = (b+l, a) # 13, 2
NORTH_RIGHT_START = (-a, -b-l) # -2, -13
NORTH_LEFT_END = (a, -b-l) # 2, -13
WEST_RIGHT = (-b, a) # -12, 2
WEST_LEFT = (-b, -a) # -12, -2
SOUTH_RIGHT = (a, b) # 2, 12
SOUTH_LEFT = (-a, b) # -2, 12
EAST_RIGHT = (b, -a) # 12, -2
EAST_LEFT = (b, a) # 12, 2
NORTH_RIGHT = (-a, -b) # -2, -12
NORTH_LEFT = (a, -b) # 2, -12
# Create Nodes with offset to avoid overlapping
WEST_RIGHT_START2 = (WEST_RIGHT_START[0], WEST_RIGHT_START[1] + 4)
WEST_LEFT_END2 = (WEST_LEFT_END[0], WEST_LEFT_END[1] - 4)
SOUTH_RIGHT_START2 = (SOUTH_RIGHT_START[0] + 4, SOUTH_RIGHT_START[1])
SOUTH_LEFT_END2 = (SOUTH_LEFT_END[0] - 4, SOUTH_LEFT_END[1])
EAST_RIGHT_START2 = (EAST_RIGHT_START[0], EAST_RIGHT_START[1] - 4)
EAST_LEFT_END2 = (EAST_LEFT_END[0], EAST_LEFT_END[1] + 4)
NORTH_RIGHT_START2 = (NORTH_RIGHT_START[0] - 4, NORTH_RIGHT_START[1])
NORTH_LEFT_END2 = (NORTH_LEFT_END[0] + 4, NORTH_LEFT_END[1])
# Create Nodes with offset to avoid overlapping
WEST_RIGHT_START3 = (WEST_RIGHT_START[0], WEST_RIGHT_START[1] + 8)
WEST_LEFT_END3 = (WEST_LEFT_END[0], WEST_LEFT_END[1] - 8)
SOUTH_RIGHT_START3 = (SOUTH_RIGHT_START[0] + 8, SOUTH_RIGHT_START[1])
SOUTH_LEFT_END3 = (SOUTH_LEFT_END[0] - 8, SOUTH_LEFT_END[1])
EAST_RIGHT_START3 = (EAST_RIGHT_START[0], EAST_RIGHT_START[1] - 8)
EAST_LEFT_END3 = (EAST_LEFT_END[0], EAST_LEFT_END[1] + 8)
NORTH_RIGHT_START3 = (NORTH_RIGHT_START[0] - 8, NORTH_RIGHT_START[1])
NORTH_LEFT_END3 = (NORTH_LEFT_END[0] + 8, NORTH_LEFT_END[1])
# Create Nodes with offset to avoid overlapping
WEST_RIGHT2 = (WEST_RIGHT[0], WEST_RIGHT[1] + 4)
WEST_LEFT2 = (WEST_LEFT[0], WEST_LEFT[1] - 4)
SOUTH_RIGHT2 = (SOUTH_RIGHT[0] + 4, SOUTH_RIGHT[1])
SOUTH_LEFT2 = (SOUTH_LEFT[0] - 4, SOUTH_LEFT[1])
EAST_RIGHT2 = (EAST_RIGHT[0], EAST_RIGHT[1] - 4)
EAST_LEFT2 = (EAST_LEFT[0], EAST_LEFT[1] + 4)
NORTH_RIGHT2 = (NORTH_RIGHT[0] - 4, NORTH_RIGHT[1])
NORTH_LEFT2 = (NORTH_LEFT[0] + 4, NORTH_LEFT[1])
# Create Nodes with offset to avoid overlapping
WEST_RIGHT3 = (WEST_RIGHT[0], WEST_RIGHT[1] + 8)
WEST_LEFT3 = (WEST_LEFT[0], WEST_LEFT[1] - 8)
SOUTH_RIGHT3 = (SOUTH_RIGHT[0] + 8, SOUTH_RIGHT[1])
SOUTH_LEFT3 = (SOUTH_LEFT[0] - 8, SOUTH_LEFT[1])
EAST_RIGHT3 = (EAST_RIGHT[0], EAST_RIGHT[1] - 8)
EAST_LEFT3 = (EAST_LEFT[0], EAST_LEFT[1] + 8)
NORTH_RIGHT3 = (NORTH_RIGHT[0] - 8, NORTH_RIGHT[1])
NORTH_LEFT3 = (NORTH_LEFT[0] + 8, NORTH_LEFT[1])
# Roads
WEST_INBOUND = (WEST_RIGHT_START, WEST_RIGHT)
SOUTH_INBOUND = (SOUTH_RIGHT_START, SOUTH_RIGHT)
EAST_INBOUND = (EAST_RIGHT_START, EAST_RIGHT)
NORTH_INBOUND = (NORTH_RIGHT_START, NORTH_RIGHT)
WEST_OUTBOUND = (WEST_LEFT, WEST_LEFT_END)
SOUTH_OUTBOUND = (SOUTH_LEFT, SOUTH_LEFT_END)
EAST_OUTBOUND = (EAST_LEFT, EAST_LEFT_END)
NORTH_OUTBOUND = (NORTH_LEFT, NORTH_LEFT_END)
WEST_STRAIGHT = (WEST_RIGHT, EAST_LEFT)
SOUTH_STRAIGHT = (SOUTH_RIGHT, NORTH_LEFT)
EAST_STRAIGHT = (EAST_RIGHT, WEST_LEFT)
NORTH_STRAIGHT = (NORTH_RIGHT, SOUTH_LEFT)
WEST_LEFT_TURN = turn_road(SOUTH_RIGHT, WEST_LEFT, TURN_LEFT, n)
SOUTH_LEFT_TURN = turn_road(EAST_RIGHT, SOUTH_LEFT, TURN_LEFT, n)
EAST_LEFT_TURN = turn_road(NORTH_RIGHT, EAST_LEFT, TURN_LEFT, n)
NORTH_LEFT_TURN = turn_road(WEST_RIGHT, NORTH_LEFT, TURN_LEFT, n)
# Create Roads
WEST_INBOUND2 = (WEST_RIGHT_START2, WEST_RIGHT2)
SOUTH_INBOUND2 = (SOUTH_RIGHT_START2, SOUTH_RIGHT2)
EAST_INBOUND2 = (EAST_RIGHT_START2, EAST_RIGHT2)
NORTH_INBOUND2 = (NORTH_RIGHT_START2, NORTH_RIGHT2)
WEST_OUTBOUND2 = (WEST_LEFT2, WEST_LEFT_END2)
SOUTH_OUTBOUND2 = (SOUTH_LEFT2, SOUTH_LEFT_END2)
EAST_OUTBOUND2 = (EAST_LEFT2, EAST_LEFT_END2)
NORTH_OUTBOUND2 = (NORTH_LEFT2, NORTH_LEFT_END2)
WEST_STRAIGHT2 = (WEST_RIGHT2, EAST_LEFT2)
SOUTH_STRAIGHT2 = (SOUTH_RIGHT2, NORTH_LEFT2)
EAST_STRAIGHT2 = (EAST_RIGHT2, WEST_LEFT2)
NORTH_STRAIGHT2 = (NORTH_RIGHT2, SOUTH_LEFT2)
# Create Roads
WEST_INBOUND3 = (WEST_RIGHT_START3, WEST_RIGHT3)
SOUTH_INBOUND3 = (SOUTH_RIGHT_START3, SOUTH_RIGHT3)
EAST_INBOUND3 = (EAST_RIGHT_START3, EAST_RIGHT3)
NORTH_INBOUND3 = (NORTH_RIGHT_START3, NORTH_RIGHT3)
WEST_OUTBOUND3 = (WEST_LEFT3, WEST_LEFT_END3)
SOUTH_OUTBOUND3 = (SOUTH_LEFT3, SOUTH_LEFT_END3)
EAST_OUTBOUND3 = (EAST_LEFT3, EAST_LEFT_END3)
NORTH_OUTBOUND3 = (NORTH_LEFT3, NORTH_LEFT_END3)
WEST_STRAIGHT3 = (WEST_RIGHT3, EAST_LEFT3)
SOUTH_STRAIGHT3 = (SOUTH_RIGHT3, NORTH_LEFT3)
EAST_STRAIGHT3 = (EAST_RIGHT3, WEST_LEFT3)
NORTH_STRAIGHT3 = (NORTH_RIGHT3, SOUTH_LEFT3)
WEST_RIGHT_TURN3 = turn_road(NORTH_RIGHT3, WEST_LEFT3, TURN_RIGHT, n)
SOUTH_RIGHT_TURN3 = turn_road(WEST_RIGHT3, SOUTH_LEFT3, TURN_RIGHT, n)
EAST_RIGHT_TURN3 = turn_road(SOUTH_RIGHT3, EAST_LEFT3, TURN_RIGHT, n)
NORTH_RIGHT_TURN3 = turn_road(EAST_RIGHT3, NORTH_LEFT3, TURN_RIGHT, n)
sim.create_roads([
WEST_INBOUND, #0
SOUTH_INBOUND, #1
EAST_INBOUND, #2
NORTH_INBOUND, #3
WEST_OUTBOUND, #4
SOUTH_OUTBOUND, #5
EAST_OUTBOUND, #6
NORTH_OUTBOUND, #7
WEST_STRAIGHT, #8
SOUTH_STRAIGHT, #9
EAST_STRAIGHT, #10
NORTH_STRAIGHT, #11
# NEW ROADS ----------------------------------------------
WEST_INBOUND2, #12
SOUTH_INBOUND2, #13
EAST_INBOUND2, #14
NORTH_INBOUND2, #15
WEST_OUTBOUND2, #16
SOUTH_OUTBOUND2, #17
EAST_OUTBOUND2, #18
NORTH_OUTBOUND2, #19
WEST_STRAIGHT2, #20
SOUTH_STRAIGHT2, #21
EAST_STRAIGHT2, #22
NORTH_STRAIGHT2, #23
#----------------------------------------------------------------
WEST_INBOUND3, #24
SOUTH_INBOUND3, #25
EAST_INBOUND3, #26
NORTH_INBOUND3, #27
WEST_OUTBOUND3, #28
SOUTH_OUTBOUND3, #29
EAST_OUTBOUND3, #30
NORTH_OUTBOUND3, #31
WEST_STRAIGHT3, #32
SOUTH_STRAIGHT3, #33
EAST_STRAIGHT3, #34
NORTH_STRAIGHT3, #35
*WEST_LEFT_TURN, #0n
*SOUTH_LEFT_TURN, #1n
*EAST_LEFT_TURN, #2n
*NORTH_LEFT_TURN, #3n
*WEST_RIGHT_TURN3, #4n
*SOUTH_RIGHT_TURN3,#5n
*EAST_RIGHT_TURN3, #6n
*NORTH_RIGHT_TURN3 #7n
])
def road(a):
if isinstance(a, int):
return list(range(a, a + n))
elif isinstance(a, list):
return a
else:
raise TypeError("Input should be either an integer or a list")
sim.create_gen({
'vehicle_rate': VEHICLE_RATE,
'vehicles':[
# 1st Lane
[2, {'path': [0, 8, 6]}],
#[2, {'path': [0, *road([2, 4, 6]), 8]}],
[2, {'path': [0, *road(NUM_OF_ROADS+3*n), 7]}],
[2, {'path': [1, 9, 7]}],
[2, {'path': [1, *road(NUM_OF_ROADS), 4]}],
[3, {'path': [2, 10, 4]}],
[3, {'path': [2, *road(NUM_OF_ROADS+1*n), 5]}],
[3, {'path': [3, 11, 5]}],
[3, {'path': [3, *road(NUM_OF_ROADS+2*n), 6]}],
# 2nd Lane
[2, {'path': [12, 20, 18]}],
[2, {'path': [13, 21, 19]}],
[3, {'path': [14, 22, 16]}],
[3, {'path': [15, 23, 17]}],
# 3rd Lane (no red light/turn right only)
[2, {'path': [24, *road(NUM_OF_ROADS+5*n), 29]}],
[2, {'path': [25, *road(NUM_OF_ROADS+6*n), 30]}],
[2, {'path': [26, *road(NUM_OF_ROADS+7*n), 31]}],
[2, {'path': [27, *road(NUM_OF_ROADS+4*n), 28]}]
]})
sim.create_signal([[0], [1], [2], [3]])
sim.create_signal([[12], [13], [14], [15]])
# Create Green Light for 3rd Lane
sim.create_signal([[24]])
sim.create_signal([[25]])
sim.create_signal([[26]])
sim.create_signal([[27]])
# Start simulation
win = Window(sim)
win.zoom = 10
if(sim.isPaused == False):
win.run(steps_per_update=STEPS_PER_UPDATE)