-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlossfuncs.py
157 lines (131 loc) · 6.23 KB
/
lossfuncs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
# Created: 2023-07-17 00:00
# Copyright (C) 2023-now, RPL, KTH Royal Institute of Technology
# Author: Qingwen Zhang (https://kin-zhang.github.io/)
#
# This file is part of DeFlow (https://github.com/KTH-RPL/DeFlow) and SeFlow (https://github.com/KTH-RPL/SeFlow).
# If you find this repo helpful, please cite the respective publication as
# listed on the above website.
#
# Description: Define the loss function for training.
"""
import torch
from assets.cuda.chamfer3D import nnChamferDis
MyCUDAChamferDis = nnChamferDis()
from src.utils.av2_eval import CATEGORY_TO_INDEX, BUCKETED_METACATAGORIES
# NOTE(Qingwen 24/07/06): squared, so it's sqrt(4) = 2m, in 10Hz the vel = 20m/s ~ 72km/h
# If your scenario is different, may need adjust this TRUNCATED to 80-120km/h vel.
TRUNCATED_DIST = 4
def seflowLoss(res_dict, timer=None):
pc0_label = res_dict['pc0_labels']
pc1_label = res_dict['pc1_labels']
pc0 = res_dict['pc0']
pc1 = res_dict['pc1']
est_flow = res_dict['est_flow']
pseudo_pc1from0 = pc0 + est_flow
unique_labels = torch.unique(pc0_label)
pc0_dynamic = pc0[pc0_label > 0]
pc1_dynamic = pc1[pc1_label > 0]
# fpc1_dynamic = pseudo_pc1from0[pc0_label > 0]
# NOTE(Qingwen): since we set THREADS_PER_BLOCK is 256
have_dynamic_cluster = (pc0_dynamic.shape[0] > 256) & (pc1_dynamic.shape[0] > 256)
# first item loss: chamfer distance
# timer[5][1].start("MyCUDAChamferDis")
# raw: pc0 to pc1, est: pseudo_pc1from0 to pc1, idx means the nearest index
est_dist0, est_dist1, _, _ = MyCUDAChamferDis.disid_res(pseudo_pc1from0, pc1)
raw_dist0, raw_dist1, raw_idx0, _ = MyCUDAChamferDis.disid_res(pc0, pc1)
chamfer_dis = torch.mean(est_dist0[est_dist0 <= TRUNCATED_DIST]) + torch.mean(est_dist1[est_dist1 <= TRUNCATED_DIST])
# timer[5][1].stop()
# second item loss: dynamic chamfer distance
# timer[5][2].start("DynamicChamferDistance")
dynamic_chamfer_dis = torch.tensor(0.0, device=est_flow.device)
if have_dynamic_cluster:
dynamic_chamfer_dis += MyCUDAChamferDis(pseudo_pc1from0[pc0_label>0], pc1_dynamic, truncate_dist=TRUNCATED_DIST)
# timer[5][2].stop()
# third item loss: exclude static points' flow
# NOTE(Qingwen): add in the later part on label==0
static_cluster_loss = torch.tensor(0.0, device=est_flow.device)
# fourth item loss: same label points' flow should be the same
# timer[5][3].start("SameClusterLoss")
moved_cluster_loss = torch.tensor(0.0, device=est_flow.device)
moved_cluster_norms = torch.tensor([], device=est_flow.device)
for label in unique_labels:
mask = pc0_label == label
if label == 0:
# Eq. 6 in the paper
static_cluster_loss += torch.linalg.vector_norm(est_flow[mask, :], dim=-1).mean()
elif label > 0 and have_dynamic_cluster:
cluster_id_flow = est_flow[mask, :]
cluster_nnd = raw_dist0[mask]
if cluster_nnd.shape[0] <= 0:
continue
# Eq. 8 in the paper
sorted_idxs = torch.argsort(cluster_nnd, descending=True)
nearby_label = pc1_label[raw_idx0[mask][sorted_idxs]] # nonzero means dynamic in label
non_zero_valid_indices = torch.nonzero(nearby_label > 0)
if non_zero_valid_indices.shape[0] <= 0:
continue
max_idx = sorted_idxs[non_zero_valid_indices.squeeze(1)[0]]
# Eq. 9 in the paper
max_flow = pc1[raw_idx0[mask][max_idx]] - pc0[mask][max_idx]
# Eq. 10 in the paper
moved_cluster_norms = torch.cat((moved_cluster_norms, torch.linalg.vector_norm((cluster_id_flow - max_flow), dim=-1)))
if moved_cluster_norms.shape[0] > 0:
moved_cluster_loss = moved_cluster_norms.mean() # Eq. 11 in the paper
elif have_dynamic_cluster:
moved_cluster_loss = torch.mean(raw_dist0[raw_dist0 <= TRUNCATED_DIST]) + torch.mean(raw_dist1[raw_dist1 <= TRUNCATED_DIST])
# timer[5][3].stop()
res_loss = {
'chamfer_dis': chamfer_dis,
'dynamic_chamfer_dis': dynamic_chamfer_dis,
'static_flow_loss': static_cluster_loss,
'cluster_based_pc0pc1': moved_cluster_loss,
}
return res_loss
def deflowLoss(res_dict):
pred = res_dict['est_flow']
gt = res_dict['gt_flow']
mask_no_nan = (~gt.isnan() & ~pred.isnan() & ~gt.isinf() & ~pred.isinf())
pred = pred[mask_no_nan].reshape(-1, 3)
gt = gt[mask_no_nan].reshape(-1, 3)
speed = gt.norm(dim=1, p=2) / 0.1
# pts_loss = torch.norm(pred - gt, dim=1, p=2)
pts_loss = torch.linalg.vector_norm(pred - gt, dim=-1)
weight_loss = 0.0
speed_0_4 = pts_loss[speed < 0.4].mean()
speed_mid = pts_loss[(speed >= 0.4) & (speed <= 1.0)].mean()
speed_1_0 = pts_loss[speed > 1.0].mean()
if ~speed_1_0.isnan():
weight_loss += speed_1_0
if ~speed_0_4.isnan():
weight_loss += speed_0_4
if ~speed_mid.isnan():
weight_loss += speed_mid
return {'loss': weight_loss}
# ref from zeroflow loss class FastFlow3DDistillationLoss()
def zeroflowLoss(res_dict):
pred = res_dict['est_flow']
gt = res_dict['gt_flow']
mask_no_nan = (~gt.isnan() & ~pred.isnan() & ~gt.isinf() & ~pred.isinf())
pred = pred[mask_no_nan].reshape(-1, 3)
gt = gt[mask_no_nan].reshape(-1, 3)
error = torch.linalg.vector_norm(pred - gt, dim=-1)
# gt_speed = torch.norm(gt, dim=1, p=2) * 10.0
gt_speed = torch.linalg.vector_norm(gt, dim=-1) * 10.0
mins = torch.ones_like(gt_speed) * 0.1
maxs = torch.ones_like(gt_speed)
importance_scale = torch.max(mins, torch.min(1.8 * gt_speed - 0.8, maxs))
# error = torch.norm(pred - gt, dim=1, p=2) * importance_scale
error = error * importance_scale
return {'loss': error.mean()}
# ref from zeroflow loss class FastFlow3DSupervisedLoss()
def ff3dLoss(res_dict):
pred = res_dict['est_flow']
gt = res_dict['gt_flow']
classes = res_dict['gt_classes']
# error = torch.norm(pred - gt, dim=1, p=2)
error = torch.linalg.vector_norm(pred - gt, dim=-1)
is_foreground_class = (classes > 0) # 0 is background, ref: FOREGROUND_BACKGROUND_BREAKDOWN
background_scalar = is_foreground_class.float() * 0.9 + 0.1
error = error * background_scalar
return {'loss': error.mean()}