-
Notifications
You must be signed in to change notification settings - Fork 0
/
ImageAugmentor.py
217 lines (162 loc) · 7.43 KB
/
ImageAugmentor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
import scipy.ndimage as ndi
import matplotlib.pyplot as plt
class ImageAugmentor:
"""Class that performs image augmentation.
Big part of this code uses Keras ImageDataGenerator file code. I just reorganized it
in this class
Attributes:
augmentation_probability: probability of augmentation
shear_range: shear intensity (shear angle in degrees).
rotation_range: degrees (0 to 180).
shift_range: fraction of total shift (horizontal and vertical).
zoom_range: amount of zoom. if scalar z, zoom will be randomly picked
in the range [1-z, 1+z]. A sequence of two can be passed instead
to select this range.
"""
def __init__(self, augmentation_probability, shear_range, rotation_range, shift_range, zoom_range):
"""Inits ImageAugmentor with the provided values for the attributes."""
self.augmentation_probability = augmentation_probability
self.shear_range = shear_range
self.rotation_range = rotation_range
self.shift_range = shift_range
self.zoom_range = zoom_range
def _transform_matrix_offset_center(self, transformation_matrix, width, height):
""" Corrects the offset of tranformation matrix
Corrects the offset of tranformation matrix for the specified image
dimensions by considering the center of the image as the central point
Args:
transformation_matrix: transformation matrix from a specific
augmentation.
width: image width
height: image height
Returns:
The corrected transformation matrix.
"""
o_x = float(width) / 2 + 0.5
o_y = float(height) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transformation_matrix = np.dot(
np.dot(offset_matrix, transformation_matrix), reset_matrix)
return transformation_matrix
# Applies a provided transformation to the image
def _apply_transform(self, image, transformation_matrix):
""" Applies a provided transformation to the image
Args:
image: image to be augmented
transformation_matrix: transformation matrix from a specific
augmentation.
Returns:
The transformed image
"""
channel_axis = 2
image = np.rollaxis(image, channel_axis, 0)
final_affine_matrix = transformation_matrix[:2, :2]
final_offset = transformation_matrix[:2, 2]
channel_images = [ndi.interpolation.affine_transform(
image_channel,
final_affine_matrix,
final_offset,
order=0,
mode='nearest',
cval=0) for image_channel in image]
image = np.stack(channel_images, axis=0)
image = np.rollaxis(image, 0, channel_axis + 1)
return image
def _perform_random_rotation(self, image):
""" Applies a random rotation
Args:
image: image to be augmented
Returns:
The transformed image
"""
theta = np.deg2rad(np.random.uniform(
low=self.rotation_range[0], high=self.rotation_range[1]))
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
transformation_matrix = self._transform_matrix_offset_center(
rotation_matrix, image.shape[0], image.shape[1])
image = self._apply_transform(image, transformation_matrix)
return image
def _perform_random_shear(self, image):
""" Applies a random shear
Args:
image: image to be augmented
Returns:
The transformed image
"""
shear = np.deg2rad(np.random.uniform(
low=self.shear_range[0], high=self.shear_range[1]))
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
transformation_matrix = self._transform_matrix_offset_center(
shear_matrix, image.shape[0], image.shape[1])
image = self._apply_transform(image, transformation_matrix)
return image
def _perform_random_shift(self, image):
""" Applies a random shift in x and y
Args:
image: image to be augmented
Returns:
The transformed image
"""
tx = np.random.uniform(-self.shift_range[0],
self.shift_range[0])
ty = np.random.uniform(-self.shift_range[1],
self.shift_range[1])
translation_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
transformation_matrix = translation_matrix # no need to do offset
image = self._apply_transform(image, transformation_matrix)
return image
def _perform_random_zoom(self, image):
""" Applies a random zoom
Args:
image: image to be augmented
Returns:
The transformed image
"""
zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2)
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
transformatiom_matrix = self._transform_matrix_offset_center(
zoom_matrix, image.shape[0], image.shape[1])
image = self._apply_transform(image, transformatiom_matrix)
return image
def get_random_transform(self, images):
""" Applies a random augmentation to pairs of images
Args:
images: pairs of the batch to be augmented
Returns:
The transformed images
"""
number_of_pairs_of_images = images[0].shape[0]
random_numbers = np.random.random(
size=(number_of_pairs_of_images * 2, 4))
for pair_index in range(number_of_pairs_of_images):
image_1 = images[0][pair_index, :, :, :]
image_2 = images[1][pair_index, :, :, :]
if random_numbers[pair_index * 2, 0] > 0.5:
image_1 = self._perform_random_rotation(image_1)
if random_numbers[pair_index * 2, 1] > 0.5:
image_1 = self._perform_random_shear(image_1)
if random_numbers[pair_index * 2, 2] > 0.5:
image_1 = self._perform_random_shift(image_1)
if random_numbers[pair_index * 2, 3] > 0.5:
image_1 = self._perform_random_zoom(image_1)
if random_numbers[pair_index * 2 + 1, 0] > 0.5:
image_2 = self._perform_random_rotation(image_2)
if random_numbers[pair_index * 2 + 1, 1] > 0.5:
image_2 = self._perform_random_shear(image_2)
if random_numbers[pair_index * 2 + 1, 2] > 0.5:
image_2 = self._perform_random_shift(image_2)
if random_numbers[pair_index * 2 + 1, 3] > 0.5:
image_2 = self._perform_random_zoom(image_2)
images[0][pair_index, :, :, :] = image_1
images[1][pair_index, :, :, :] = image_2
return images