diff --git a/src/tensors/braidingtensor.jl b/src/tensors/braidingtensor.jl index 121ba7e2..10a29a07 100644 --- a/src/tensors/braidingtensor.jl +++ b/src/tensors/braidingtensor.jl @@ -34,7 +34,7 @@ function BraidingTensor(V1::S, V2::S, adjoint::Bool=false) where {S<:IndexSpace} end function Base.adjoint(b::BraidingTensor{S,A}) where {S<:IndexSpace,A<:DenseMatrix} - return BraidingTensor(b.V1, b.V2, !b.adjoint, A) + return BraidingTensor{S,A}(b.V1, b.V2, !b.adjoint) end domain(b::BraidingTensor) = b.adjoint ? b.V2 ⊗ b.V1 : b.V1 ⊗ b.V2 @@ -117,6 +117,8 @@ end end end +Base.similar(::BraidingTensor, T::Type, P::TensorMapSpace) = TensorMap(undef, T, P) + Base.copy(b::BraidingTensor) = copy!(similar(b), b) function Base.copy!(t::TensorMap, b::BraidingTensor) space(t) == space(b) || throw(SectorMismatch()) @@ -191,146 +193,26 @@ function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, codB, domB = codomainind(B), domainind(B) oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, oindB, cindB, p1, p2) - + if space(B, cindB[1]) != space(A, cindA[1])' || space(B, cindB[2]) != space(A, cindA[2])' throw(SpaceMismatch("$(space(C)) ≠ permute($(space(A))[$oindA, $cindA] * $(space(B))[$cindB, $oindB], ($p1, $p2)")) end - + if BraidingStyle(sectortype(B)) isa Bosonic return add_permute!(C, B, (reverse(cindB), oindB), α, β, backend...) end τ_levels = A.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) - levels = (τ_levels[cindA[1]], τ_levels[cindA[2]], ntuple(i -> 0, N₃)...) - return add_braid!(C, B, (reverse(cindB), oindB), levels, α, β, backend...) - - # inv_braid = braidingtensor_levels[cindA[1]] > braidingtensor_levels[cindA[2]] - # for (f₁, f₂) in fusiontrees(B) - # local newtrees - # for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, cindB, oindB) - # for (f₁′′, coeff′′) in artin_braid(f₁′, 1; inv=inv_braid) - # f12 = (f₁′′, f₂′) - # coeff = coeff′ * coeff′′ - # if @isdefined newtrees - # newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff - # else - # newtrees = Dict(f12 => coeff) - # end - # end - # end - # for ((f₁′, f₂′), coeff) in newtrees - # TO._add!(coeff * α, B[f₁, f₂], true, C[f₁′, f₂′], (reverse(cindB)..., oindB...)) - # end - # end - # return C -end -function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, - A::AbstractTensorMap{S}, - (oindA, cindA)::Index2Tuple{N₃,2}, - B::BraidingTensor{S}, - (cindB, oindB)::Index2Tuple{2,2}, - (p1, p2)::Index2Tuple{N₁,N₂}, - α::Number, β::Number, - backend::Backend...) where {S,N₁,N₂,N₃} - codA, domA = codomainind(A), domainind(A) - codB, domB = codomainind(B), domainind(B) - oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, - oindB, cindB, p1, p2) - - if space(B, cindB[1]) != space(A, cindA[1])' || - space(B, cindB[2]) != space(A, cindA[2])' - throw(SpaceMismatch("$(space(C)) ≠ permute($(space(A))[$oindA, $cindA] * $(space(B))[$cindB, $oindB], ($p1, $p2)")) - end - - if BraidingStyle(sectortype(A)) isa Bosonic - return add_permute!(C, A, (oindA, reverse(cindA)), α, β, backend...) - end - - τ_levels = B.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) - levels = (ntuple(i -> 0, N₃)..., τ_levels[cindB[1]], τ_levels[cindB[2]]) - return add_braid!(C, A, (oindA, reverse(cindA)), levels, α, β, backend...) - - # if iszero(β) - # fill!(C, β) - # elseif β != 1 - # rmul!(C, β) - # end - # braidingtensor_levels = B.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) - # inv_braid = braidingtensor_levels[cindB[1]] > braidingtensor_levels[cindB[2]] - # for (f₁, f₂) in fusiontrees(A) - # local newtrees - # for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, oindA, cindA) - # for (f₂′′, coeff′′) in artin_braid(f₂′, 1; inv=inv_braid) - # f12 = (f₁′, f₂′′) - # coeff = coeff′ * conj(coeff′′) - # if @isdefined newtrees - # newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff - # else - # newtrees = Dict(f12 => coeff) - # end - # end - # end - # for ((f₁′, f₂′), coeff) in newtrees - # TO._add!(coeff * α, A[f₁, f₂], true, C[f₁′, f₂′], (oindA..., reverse(cindA)...)) - # end - # end - # return C -end - -function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, - A::BraidingTensor{S}, - (oindA, cindA)::Index2Tuple{0,4}, - B::AbstractTensorMap{S}, - (cindB, oindB)::Index2Tuple{4,<:Any}, - (p1, p2)::Index2Tuple{N₁,N₂}, - α::Number, β::Number, - backend::Backend...) where {S,N₁,N₂} - codA, domA = codomainind(A), domainind(A) - codB, domB = codomainind(B), domainind(B) - oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, - oindB, cindB, p1, p2) - - @assert space(B, cindB[1]) == space(A, cindA[1])' && - space(B, cindB[2]) == space(A, cindA[2])' && - space(B, cindB[3]) == space(A, cindA[3])' && - space(B, cindB[4]) == space(A, cindA[4])' - - if BraidingStyle(sectortype(B)) isa Bosonic - return trace!(α, B, β, C, (), oindB, (cindB[1], cindB[2]), (cindB[3], cindB[4])) - end - - if iszero(β) - fill!(C, β) - elseif β != 1 - rmul!(C, β) - end - I = sectortype(B) - u = one(I) - f₀ = FusionTree{I}((), u, (), (), ()) - braidingtensor_levels = A.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) - inv_braid = braidingtensor_levels[cindA[2]] > braidingtensor_levels[cindA[3]] + scale!(C, β) + + inv_braid = τ_levels[cindA[1]] > τ_levels[cindA[2]] for (f₁, f₂) in fusiontrees(B) local newtrees for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, cindB, oindB) - f₁′.coupled == u || continue - a = f₁′.uncoupled[1] - b = f₁′.uncoupled[2] - f₁′.uncoupled[3] == dual(a) || continue - f₁′.uncoupled[4] == dual(b) || continue - # should be automatic by matching spaces: - # f₁′.isdual[1] != f₁′.isdual[3] || continue - # f₁′.isdual[2] != f₁′.isdual[4] || continue - for (f₁′′, coeff′′) in artin_braid(f₁′, 2; inv=inv_braid) - f₁′′.innerlines[1] == u || continue - coeff = coeff′ * coeff′′ * sqrtdim(a) * sqrtdim(b) - if f₁′′.isdual[1] - coeff *= frobeniusschur(a) - end - if f₁′′.isdual[3] - coeff *= frobeniusschur(b) - end - f12 = (f₀, f₂′) + for (f₁′′, coeff′′) in artin_braid(f₁′, 1; inv=inv_braid) + f12 = (f₁′′, f₂′) + coeff = coeff′ * coeff′′ if @isdefined newtrees newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff else @@ -338,191 +220,44 @@ function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, end end end - @isdefined(newtrees) || continue for ((f₁′, f₂′), coeff) in newtrees - TO._trace!(coeff * α, B[f₁, f₂], true, C[f₁′, f₂′], oindB, - (cindB[1], cindB[2]), (cindB[3], cindB[4])) + TO.tensoradd!(C[f₁′, f₂′], (reverse(cindB), oindB), B[f₁, f₂], :N, α * coeff, One(), backend...) end end return C end function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, A::AbstractTensorMap{S}, - (oindA, cindA)::Index2Tuple{0,4}, + (oindA, cindA)::Index2Tuple{N₃,2}, B::BraidingTensor{S}, - (cindB, oindB)::Index2Tuple{4,<:Any}, - (p1, p2)::Index2Tuple{N₁,N₂}, - α::Number, β::Number, - backends...) where {S,N₁,N₂} - codA, domA = codomainind(A), domainind(A) - codB, domB = codomainind(B), domainind(B) - oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, - oindB, cindB, p1, p2) - - @assert space(B, cindB[1]) == space(A, cindA[1])' && - space(B, cindB[2]) == space(A, cindA[2])' && - space(B, cindB[3]) == space(A, cindA[3])' && - space(B, cindB[4]) == space(A, cindA[4])' - - if BraidingStyle(sectortype(B)) isa Bosonic - return trace!(α, A, β, C, oindA, (), (cindA[1], cindA[2]), (cindA[3], cindA[4])) - end - - if iszero(β) - fill!(C, β) - elseif β != 1 - rmul!(C, β) - end - I = sectortype(B) - u = one(I) - f₀ = FusionTree{I}((), u, (), (), ()) - braidingtensor_levels = B.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) - inv_braid = braidingtensor_levels[cindB[2]] > braidingtensor_levels[cindB[3]] - for (f₁, f₂) in fusiontrees(A) - local newtrees - for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, oindA, cindA) - f₂′.coupled == u || continue - a = f₂′.uncoupled[1] - b = f₂′.uncoupled[2] - f₂′.uncoupled[3] == dual(a) || continue - f₂′.uncoupled[4] == dual(b) || continue - # should be automatic by matching spaces: - # f₂′.isdual[1] != f₂′.isdual[3] || continue - # f₂′.isdual[3] != f₂′.isdual[4] || continue - for (f₂′′, coeff′′) in artin_braid(f₂′, 2; inv=inv_braid) - f₂′′.innerlines[1] == u || continue - coeff = coeff′ * conj(coeff′′ * sqrtdim(a) * sqrtdim(b)) - if f₂′′.isdual[1] - coeff *= conj(frobeniusschur(a)) - end - if f₂′′.isdual[3] - coeff *= conj(frobeniusschur(b)) - end - f12 = (f₁′, f₀) - if @isdefined newtrees - newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff - else - newtrees = Dict(f12 => coeff) - end - end - end - @isdefined(newtrees) || continue - for ((f₁′, f₂′), coeff) in newtrees - TO._trace!(coeff * α, A[f₁, f₂], true, C[f₁′, f₂′], oindA, - (cindA[1], cindA[2]), (cindA[3], cindA[4])) - end - end - return C -end -function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, - A::BraidingTensor{S}, - (oindA, cindA)::Index2Tuple{1,3}, - B::AbstractTensorMap{S}, - (cindB, oindB)::Index2Tuple{1,<:Any}, + (cindB, oindB)::Index2Tuple{2,2}, (p1, p2)::Index2Tuple{N₁,N₂}, α::Number, β::Number, - backend::Backend...) where {S,N₁,N₂} + backend::Backend...) where {S,N₁,N₂,N₃} codA, domA = codomainind(A), domainind(A) codB, domB = codomainind(B), domainind(B) oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, oindB, cindB, p1, p2) - @assert space(B, cindB[1]) == space(A, cindA[1])' && - space(B, cindB[2]) == space(A, cindA[2])' && - space(B, cindB[3]) == space(A, cindA[3])' - - if BraidingStyle(sectortype(B)) isa Bosonic - return trace!(α, B, β, C, (cindB[2],), oindB, (cindB[1],), (cindB[3],)) - end - - if iszero(β) - fill!(C, β) - elseif β != 1 - rmul!(C, β) - end - I = sectortype(B) - u = one(I) - braidingtensor_levels = A.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) - inv_braid = braidingtensor_levels[cindA[2]] > braidingtensor_levels[cindA[3]] - for (f₁, f₂) in fusiontrees(B) - local newtrees - for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, cindB, oindB) - a = f₁′.uncoupled[1] - b = f₁′.uncoupled[2] - b == f₁′.coupled || continue - a == dual(f₁′.uncoupled[3]) || continue - # should be automatic by matching spaces: - # f₁′.isdual[1] != f₁.isdual[3] || continue - for (f₁′′, coeff′′) in artin_braid(f₁′, 2; inv=inv_braid) - f₁′′.innerlines[1] == u || continue - coeff = coeff′ * coeff′′ * sqrtdim(a) - if f₁′′.isdual[1] - coeff *= frobeniusschur(a) - end - f₁′′′ = FusionTree{I}((b,), b, (f₁′′.isdual[3],), (), ()) - f12 = (f₁′′′, f₂′) - if @isdefined newtrees - newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff - else - newtrees = Dict(f12 => coeff) - end - end - end - @isdefined(newtrees) || continue - for ((f₁′, f₂′), coeff) in newtrees - TO._trace!(coeff * α, B[f₁, f₂], true, C[f₁′, f₂′], - (cindB[2], oindB...), (cindB[1],), (cindB[3],)) - end + if space(B, cindB[1]) != space(A, cindA[1])' || + space(B, cindB[2]) != space(A, cindA[2])' + throw(SpaceMismatch("$(space(C)) ≠ permute($(space(A))[$oindA, $cindA] * $(space(B))[$cindB, $oindB], ($p1, $p2)")) end - return C -end -function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, - A::AbstractTensorMap{S}, - (oindA, cindA)::Index2Tuple{<:Any,3}, - B::BraidingTensor{S}, - (cindB, oindB)::Index2Tuple{3,1}, - (p1, p2)::Index2Tuple{N₁,N₂}, - α::Number, β::Number, - backend::Backend...) where {S,N₁,N₂} - codA, domA = codomainind(A), domainind(A) - codB, domB = codomainind(B), domainind(B) - oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, - oindB, cindB, p1, p2) - - @assert space(B, cindB[1]) == space(A, cindA[1])' && - space(B, cindB[2]) == space(A, cindA[2])' && - space(B, cindB[3]) == space(A, cindA[3])' if BraidingStyle(sectortype(A)) isa Bosonic - return trace!(α, A, β, C, oindA, (cindA[2],), (cindA[1],), (cindA[3],)) + return add_permute!(C, A, (oindA, reverse(cindA)), α, β, backend...) end - if iszero(β) - fill!(C, β) - elseif β != 1 - rmul!(C, β) - end - I = sectortype(B) - u = one(I) - braidingtensor_levels = B.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) - inv_braid = braidingtensor_levels[cindB[2]] > braidingtensor_levels[cindB[3]] + scale!(C, β) + τ_levels = B.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) + inv_braid = τ_levels[cindB[1]] > τ_levels[cindB[2]] + for (f₁, f₂) in fusiontrees(A) local newtrees for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, oindA, cindA) - a = f₂′.uncoupled[1] - b = f₂′.uncoupled[2] - b == f₂′.coupled || continue - a == dual(f₂′.uncoupled[3]) || continue - # should be automatic by matching spaces: - # f₂′.isdual[1] != f₂.isdual[3] || continue - for (f₂′′, coeff′′) in artin_braid(f₂′, 2; inv=inv_braid) - f₂′′.innerlines[1] == u || continue - coeff = coeff′ * conj(coeff′′ * sqrtdim(a)) - if f₂′′.isdual[1] - coeff *= conj(frobeniusschur(a)) - end - f₂′′′ = FusionTree{I}((b,), b, (f₂′′.isdual[3],), (), ()) - f12 = (f₁′, f₂′′′) + for (f₂′′, coeff′′) in artin_braid(f₂′, 1; inv=inv_braid) + f12 = (f₁′, f₂′′) + coeff = coeff′ * conj(coeff′′) if @isdefined newtrees newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff else @@ -530,13 +265,272 @@ function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, end end end - @isdefined(newtrees) || continue for ((f₁′, f₂′), coeff) in newtrees - TO._trace!(coeff * α, A[f₁, f₂], true, C[f₁′, f₂′], - (oindA..., cindA[2]), (cindA[1],), (cindA[3],)) + TO.tensoradd!(C[f₁′, f₂′], (oindA, reverse(cindA)), A[f₁, f₂], :N, α * coeff, One(), backend...) end end return C end +# function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, +# A::BraidingTensor{S}, +# (oindA, cindA)::Index2Tuple{0,4}, +# B::AbstractTensorMap{S}, +# (cindB, oindB)::Index2Tuple{4,<:Any}, +# (p1, p2)::Index2Tuple{N₁,N₂}, +# α::Number, β::Number, +# backend::Backend...) where {S,N₁,N₂} +# codA, domA = codomainind(A), domainind(A) +# codB, domB = codomainind(B), domainind(B) +# oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, +# oindB, cindB, p1, p2) + +# @assert space(B, cindB[1]) == space(A, cindA[1])' && +# space(B, cindB[2]) == space(A, cindA[2])' && +# space(B, cindB[3]) == space(A, cindA[3])' && +# space(B, cindB[4]) == space(A, cindA[4])' + +# if BraidingStyle(sectortype(B)) isa Bosonic +# return trace!(α, B, β, C, (), oindB, (cindB[1], cindB[2]), (cindB[3], cindB[4])) +# end + +# if iszero(β) +# fill!(C, β) +# elseif β != 1 +# rmul!(C, β) +# end +# I = sectortype(B) +# u = one(I) +# f₀ = FusionTree{I}((), u, (), (), ()) +# braidingtensor_levels = A.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) +# inv_braid = braidingtensor_levels[cindA[2]] > braidingtensor_levels[cindA[3]] +# for (f₁, f₂) in fusiontrees(B) +# local newtrees +# for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, cindB, oindB) +# f₁′.coupled == u || continue +# a = f₁′.uncoupled[1] +# b = f₁′.uncoupled[2] +# f₁′.uncoupled[3] == dual(a) || continue +# f₁′.uncoupled[4] == dual(b) || continue +# # should be automatic by matching spaces: +# # f₁′.isdual[1] != f₁′.isdual[3] || continue +# # f₁′.isdual[2] != f₁′.isdual[4] || continue +# for (f₁′′, coeff′′) in artin_braid(f₁′, 2; inv=inv_braid) +# f₁′′.innerlines[1] == u || continue +# coeff = coeff′ * coeff′′ * sqrtdim(a) * sqrtdim(b) +# if f₁′′.isdual[1] +# coeff *= frobeniusschur(a) +# end +# if f₁′′.isdual[3] +# coeff *= frobeniusschur(b) +# end +# f12 = (f₀, f₂′) +# if @isdefined newtrees +# newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff +# else +# newtrees = Dict(f12 => coeff) +# end +# end +# end +# @isdefined(newtrees) || continue +# for ((f₁′, f₂′), coeff) in newtrees +# TO._trace!(coeff * α, B[f₁, f₂], true, C[f₁′, f₂′], oindB, +# (cindB[1], cindB[2]), (cindB[3], cindB[4])) +# end +# end +# return C +# end +# function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, +# A::AbstractTensorMap{S}, +# (oindA, cindA)::Index2Tuple{0,4}, +# B::BraidingTensor{S}, +# (cindB, oindB)::Index2Tuple{4,<:Any}, +# (p1, p2)::Index2Tuple{N₁,N₂}, +# α::Number, β::Number, +# backends...) where {S,N₁,N₂} +# codA, domA = codomainind(A), domainind(A) +# codB, domB = codomainind(B), domainind(B) +# oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, +# oindB, cindB, p1, p2) + +# @assert space(B, cindB[1]) == space(A, cindA[1])' && +# space(B, cindB[2]) == space(A, cindA[2])' && +# space(B, cindB[3]) == space(A, cindA[3])' && +# space(B, cindB[4]) == space(A, cindA[4])' + +# if BraidingStyle(sectortype(B)) isa Bosonic +# return trace!(α, A, β, C, oindA, (), (cindA[1], cindA[2]), (cindA[3], cindA[4])) +# end + +# if iszero(β) +# fill!(C, β) +# elseif β != 1 +# rmul!(C, β) +# end +# I = sectortype(B) +# u = one(I) +# f₀ = FusionTree{I}((), u, (), (), ()) +# braidingtensor_levels = B.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) +# inv_braid = braidingtensor_levels[cindB[2]] > braidingtensor_levels[cindB[3]] +# for (f₁, f₂) in fusiontrees(A) +# local newtrees +# for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, oindA, cindA) +# f₂′.coupled == u || continue +# a = f₂′.uncoupled[1] +# b = f₂′.uncoupled[2] +# f₂′.uncoupled[3] == dual(a) || continue +# f₂′.uncoupled[4] == dual(b) || continue +# # should be automatic by matching spaces: +# # f₂′.isdual[1] != f₂′.isdual[3] || continue +# # f₂′.isdual[3] != f₂′.isdual[4] || continue +# for (f₂′′, coeff′′) in artin_braid(f₂′, 2; inv=inv_braid) +# f₂′′.innerlines[1] == u || continue +# coeff = coeff′ * conj(coeff′′ * sqrtdim(a) * sqrtdim(b)) +# if f₂′′.isdual[1] +# coeff *= conj(frobeniusschur(a)) +# end +# if f₂′′.isdual[3] +# coeff *= conj(frobeniusschur(b)) +# end +# f12 = (f₁′, f₀) +# if @isdefined newtrees +# newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff +# else +# newtrees = Dict(f12 => coeff) +# end +# end +# end +# @isdefined(newtrees) || continue +# for ((f₁′, f₂′), coeff) in newtrees +# TO._trace!(coeff * α, A[f₁, f₂], true, C[f₁′, f₂′], oindA, +# (cindA[1], cindA[2]), (cindA[3], cindA[4])) +# end +# end +# return C +# end +# function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, +# A::BraidingTensor{S}, +# (oindA, cindA)::Index2Tuple{1,3}, +# B::AbstractTensorMap{S}, +# (cindB, oindB)::Index2Tuple{1,<:Any}, +# (p1, p2)::Index2Tuple{N₁,N₂}, +# α::Number, β::Number, +# backend::Backend...) where {S,N₁,N₂} +# codA, domA = codomainind(A), domainind(A) +# codB, domB = codomainind(B), domainind(B) +# oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, +# oindB, cindB, p1, p2) + +# @assert space(B, cindB[1]) == space(A, cindA[1])' && +# space(B, cindB[2]) == space(A, cindA[2])' && +# space(B, cindB[3]) == space(A, cindA[3])' + +# if BraidingStyle(sectortype(B)) isa Bosonic +# return trace!(α, B, β, C, (cindB[2],), oindB, (cindB[1],), (cindB[3],)) +# end + +# if iszero(β) +# fill!(C, β) +# elseif β != 1 +# rmul!(C, β) +# end +# I = sectortype(B) +# u = one(I) +# braidingtensor_levels = A.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) +# inv_braid = braidingtensor_levels[cindA[2]] > braidingtensor_levels[cindA[3]] +# for (f₁, f₂) in fusiontrees(B) +# local newtrees +# for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, cindB, oindB) +# a = f₁′.uncoupled[1] +# b = f₁′.uncoupled[2] +# b == f₁′.coupled || continue +# a == dual(f₁′.uncoupled[3]) || continue +# # should be automatic by matching spaces: +# # f₁′.isdual[1] != f₁.isdual[3] || continue +# for (f₁′′, coeff′′) in artin_braid(f₁′, 2; inv=inv_braid) +# f₁′′.innerlines[1] == u || continue +# coeff = coeff′ * coeff′′ * sqrtdim(a) +# if f₁′′.isdual[1] +# coeff *= frobeniusschur(a) +# end +# f₁′′′ = FusionTree{I}((b,), b, (f₁′′.isdual[3],), (), ()) +# f12 = (f₁′′′, f₂′) +# if @isdefined newtrees +# newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff +# else +# newtrees = Dict(f12 => coeff) +# end +# end +# end +# @isdefined(newtrees) || continue +# for ((f₁′, f₂′), coeff) in newtrees +# TO._trace!(coeff * α, B[f₁, f₂], true, C[f₁′, f₂′], +# (cindB[2], oindB...), (cindB[1],), (cindB[3],)) +# end +# end +# return C +# end +# function planarcontract!(C::AbstractTensorMap{S,N₁,N₂}, +# A::AbstractTensorMap{S}, +# (oindA, cindA)::Index2Tuple{<:Any,3}, +# B::BraidingTensor{S}, +# (cindB, oindB)::Index2Tuple{3,1}, +# (p1, p2)::Index2Tuple{N₁,N₂}, +# α::Number, β::Number, +# backend::Backend...) where {S,N₁,N₂} +# codA, domA = codomainind(A), domainind(A) +# codB, domB = codomainind(B), domainind(B) +# oindA, cindA, oindB, cindB = reorder_indices(codA, domA, codB, domB, oindA, cindA, +# oindB, cindB, p1, p2) + +# @assert space(B, cindB[1]) == space(A, cindA[1])' && +# space(B, cindB[2]) == space(A, cindA[2])' && +# space(B, cindB[3]) == space(A, cindA[3])' + +# if BraidingStyle(sectortype(A)) isa Bosonic +# return trace!(α, A, β, C, oindA, (cindA[2],), (cindA[1],), (cindA[3],)) +# end + +# if iszero(β) +# fill!(C, β) +# elseif β != 1 +# rmul!(C, β) +# end +# I = sectortype(B) +# u = one(I) +# braidingtensor_levels = B.adjoint ? (1, 2, 2, 1) : (2, 1, 1, 2) +# inv_braid = braidingtensor_levels[cindB[2]] > braidingtensor_levels[cindB[3]] +# for (f₁, f₂) in fusiontrees(A) +# local newtrees +# for ((f₁′, f₂′), coeff′) in transpose(f₁, f₂, oindA, cindA) +# a = f₂′.uncoupled[1] +# b = f₂′.uncoupled[2] +# b == f₂′.coupled || continue +# a == dual(f₂′.uncoupled[3]) || continue +# # should be automatic by matching spaces: +# # f₂′.isdual[1] != f₂.isdual[3] || continue +# for (f₂′′, coeff′′) in artin_braid(f₂′, 2; inv=inv_braid) +# f₂′′.innerlines[1] == u || continue +# coeff = coeff′ * conj(coeff′′ * sqrtdim(a)) +# if f₂′′.isdual[1] +# coeff *= conj(frobeniusschur(a)) +# end +# f₂′′′ = FusionTree{I}((b,), b, (f₂′′.isdual[3],), (), ()) +# f12 = (f₁′, f₂′′′) +# if @isdefined newtrees +# newtrees[f12] = get(newtrees, f12, zero(coeff)) + coeff +# else +# newtrees = Dict(f12 => coeff) +# end +# end +# end +# @isdefined(newtrees) || continue +# for ((f₁′, f₂′), coeff) in newtrees +# TO._trace!(coeff * α, A[f₁, f₂], true, C[f₁′, f₂′], +# (oindA..., cindA[2]), (cindA[1],), (cindA[3],)) +# end +# end +# return C +# end + has_shared_permute(t::BraidingTensor, args...) = false