-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathSFRCNN.py
301 lines (276 loc) · 10.3 KB
/
SFRCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import torch.nn as nn
import math
from norms import select_norm
'''
B: Batch number
N: Channel number
L: length of sequence
'''
class ConvNormAct(nn.Module):
def __init__(self, in_channels=512, out_channels=512, kernel_size=5, stride=1, groups=1, d=1, norm='gLN', mode='CNA'):
'''
in_channels: number of input channels
out_channels: number of output channels
group: the conv channel group
d: controls the spacing between the kernel points; also known as the à trous algorithm
mode: Conv -> Norm -> Act == 'CNA' or Conv -> Norm == 'CN' or Norm -> Act == 'NA'
DilatedConv -> Norm == 'DCN'.
'''
super(ConvNormAct, self).__init__()
if mode == 'CNA':
padding = int((kernel_size - 1) / 2)
self.net = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
bias=True, groups=groups),
select_norm(norm, out_channels),
nn.PReLU()
)
elif mode == 'CN':
padding = int((kernel_size - 1) / 2)
self.net = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
bias=True, groups=groups),
select_norm(norm, out_channels)
)
elif mode == 'NA':
self.net = nn.Sequential(
select_norm(norm, out_channels),
nn.PReLU()
)
elif mode == 'DCN':
self.net = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, dilation=d,
padding=((kernel_size - 1) // 2) * d, groups=groups),
select_norm(norm, out_channels)
)
def forward(self, x):
'''
x : [B, N, L]
'''
return self.net(x)
class SFRCNN_Block(nn.Module):
'''
Unet network structure
'''
def __init__(self,
out_channels=128,
in_channels=512,
states=4):
'''
in_channels: number of input channels
out_channels: number of output channels
states: the number of MSRNN states
'''
super(SFRCNN_Block, self).__init__()
self.first = ConvNormAct(out_channels, in_channels, kernel_size=1,
stride=1, groups=1)
self.states = states
# Bottom-up
self.bottom_up = nn.ModuleList([])
self.bottom_up.append(ConvNormAct(
in_channels, in_channels, kernel_size=5, stride=1, groups=in_channels, mode='CN'))
for i in range(1, states):
self.bottom_up.append(ConvNormAct(
in_channels, in_channels, kernel_size=5, stride=2, groups=in_channels, mode='CN'))
# Top-down
if states > 1:
self.top_down = torch.nn.Upsample(scale_factor=2)
# Resual Path
self.final_norm = ConvNormAct(in_channels, mode='NA')
self.res_conv = nn.Conv1d(in_channels, out_channels, 1)
def forward(self, x):
'''
x : [B, N, L]
'''
residual = x.clone()
output1 = self.first(x)
# Bottom-up
output = [self.bottom_up[0](output1)]
for k in range(1, self.states):
out_k = self.bottom_up[k](output[-1])
output.append(out_k)
# Top-down
for _ in range(self.states-1):
resampled_out_k = self.top_down(output.pop(-1))
output[-1] = output[-1] + resampled_out_k
# Resual Path
expanded = self.final_norm(output[-1])
return self.res_conv(expanded) + residual
class Recurrent(nn.Module):
def __init__(self,
out_channels=128,
in_channels=512,
states=4,
_iter=4,
mode='SC'):
'''
out_channels: the LayerNorm output channels
in_channels: the MSRNN input channels
states: the number of MSRNN states
_iter: the number of iteration
mode: DC, CC, SC in the paper
'''
super(Recurrent, self).__init__()
self.iter = _iter
self.mode = mode
if mode == 'DC':
self.msrnn = SFRCNN_Block(out_channels, in_channels, states)
elif mode == 'CC':
self.msrnn = SFRCNN_Block(out_channels, in_channels, states)
self.concat_block = nn.Sequential(
nn.Conv1d(out_channels*2, out_channels,
1, 1, groups=out_channels),
nn.PReLU()
)
elif mode == 'SC':
self.msrnn = SFRCNN_Block(out_channels, in_channels, states)
self.concat_block = nn.Sequential(
nn.Conv1d(out_channels, out_channels,
1, 1, groups=out_channels),
nn.PReLU()
)
def forward(self, x):
'''
x : [B, N, L]
'''
mixture = x.clone()
if self.mode == 'DC':
x = self.msrnn(x)
else:
for i in range(self.iter):
if i == 0:
x = self.msrnn(x)
else:
if self.mode == 'CC':
x = self.msrnn(self.concat_block(
torch.cat((mixture, x), dim=1)))
else:
x = self.msrnn(self.concat_block(mixture+x))
return x
class SFRCNN(nn.Module):
def __init__(self,
out_channels=128,
in_channels=512,
num_blocks=16,
states=4,
enc_kernel_size=21,
enc_num_basis=512,
num_sources=2,
recurrent_mode='SC'):
super(SFRCNN, self).__init__()
'''
out_channels: the layernrom output channels
in_channels: the msrnn block input channels
num_block: the msrnn block number
enc_kernel_size: the encoder/decoder kernel size
enc_num_basis: the encoder/decoder channels
recurrent_mode: recurrent methods: [DC, CC, SC]
'''
# Parameters
self.in_channels = in_channels
self.out_channels = out_channels
self.num_blocks = num_blocks
self.states = states
self.enc_kernel_size = enc_kernel_size
self.enc_num_basis = enc_num_basis
self.num_sources = num_sources
# Appropriate padding is needed for arbitrary lengths
self.lcm = abs(self.enc_kernel_size // 2 * 2 **
self.states) // math.gcd(
self.enc_kernel_size // 2,
2 ** self.states)
# Encoder
self.encoder = nn.Conv1d(in_channels=1, out_channels=enc_num_basis,
kernel_size=enc_kernel_size,
stride=enc_kernel_size // 2,
padding=enc_kernel_size // 2,
bias=False)
torch.nn.init.xavier_uniform_(self.encoder.weight)
self.ln = select_norm('gLN', enc_num_basis)
self.bottleneck = nn.Conv1d(
in_channels=enc_num_basis,
out_channels=out_channels,
kernel_size=1)
# Separation module
self.sm = Recurrent(out_channels, in_channels,
states, num_blocks, mode=recurrent_mode)
self.mask_net = nn.Sequential(nn.PReLU(),
nn.Conv1d(out_channels,
num_sources * enc_num_basis, 1)
)
# Decoder
self.decoder = nn.ConvTranspose1d(
in_channels=enc_num_basis * num_sources,
out_channels=num_sources,
output_padding=(enc_kernel_size // 2) - 1,
kernel_size=enc_kernel_size,
stride=enc_kernel_size // 2,
padding=enc_kernel_size // 2,
groups=1, bias=False)
torch.nn.init.xavier_uniform_(self.decoder.weight)
self.mask_nl_class = nn.ReLU()
def forward(self, input_wav):
'''
input_wav: [T] or [B, T] or [B, 1, T]
'''
was_one_d = False
if input_wav.ndim == 1:
was_one_d = True
input_wav = input_wav.unsqueeze(0).unsqueeze(1)
if input_wav.ndim == 2:
input_wav = input_wav.unsqueeze(1)
# Encoder
x = self.pad_to_appropriate_length(input_wav)
x = self.encoder(x)
w = x.clone()
x = self.ln(x)
x = self.bottleneck(x)
# Separation module
x = self.sm(x)
x = self.mask_net(x)
x = x.view(x.shape[0], self.num_sources, self.enc_num_basis, -1)
x = self.mask_nl_class(x)
x = x * w.unsqueeze(1)
# Decoder
estimated_waveforms = self.decoder(x.view(x.shape[0], -1, x.shape[-1]))
estimated_waveforms = self.remove_trailing_zeros(
estimated_waveforms, input_wav)
if was_one_d:
return estimated_waveforms.squeeze(0)
return estimated_waveforms
def pad_to_appropriate_length(self, x):
values_to_pad = int(x.shape[-1]) % self.lcm
if values_to_pad:
appropriate_shape = x.shape
padded_x = torch.zeros(
list(appropriate_shape[:-1]) +
[appropriate_shape[-1] + self.lcm - values_to_pad],
dtype=torch.float32).to(x.device)
padded_x[..., :x.shape[-1]] = x
return padded_x
return x
def remove_trailing_zeros(self, padded_x, initial_x):
return padded_x[..., :initial_x.shape[-1]]
def cal_parameters(net):
'''
Returns module parameters. Mb
'''
params = 0
for f in net.parameters():
if f.requires_grad:
params += f.numel()
return round(params / 10**6, 3)
if __name__ == "__main__":
wav = torch.rand(32000)
model = SFRCNN(out_channels=512,
in_channels=512,
num_blocks=16,
states=5,
enc_kernel_size=21,
enc_num_basis=512,
num_sources=2,
recurrent_mode='SC')
est = model(wav)
print(est.shape)
print(cal_parameters(model))