diff --git a/entropix.ipynb b/entropix.ipynb index 6361cec..be3a34a 100644 --- a/entropix.ipynb +++ b/entropix.ipynb @@ -5,7 +5,7 @@ "colab": { "provenance": [], "gpuType": "V28", - "authorship_tag": "ABX9TyN8U6k4TIpovU5kGA3L4RuN", + "authorship_tag": "ABX9TyMwNK6aEAWPQERQG0wgmb5s", "include_colab_link": true }, "kernelspec": { @@ -30,13 +30,13 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "metadata": { "id": "xZd9EBLmgKU6" }, "outputs": [], "source": [ - "from typing import NamedTuple, List, Optional, Tuple\n", + "from typing import Dict, List, NamedTuple, Optional, Tuple\n", "\n", "import jax\n", "import jax.numpy as jnp" @@ -60,7 +60,7 @@ "metadata": { "id": "oHaZYRqAnRPS" }, - "execution_count": 9, + "execution_count": 2, "outputs": [] }, { @@ -113,7 +113,7 @@ "metadata": { "id": "RHxP8Bd1lvo8" }, - "execution_count": 10, + "execution_count": 3, "outputs": [] }, { @@ -147,7 +147,7 @@ "metadata": { "id": "flDeKnQlhS1J" }, - "execution_count": 11, + "execution_count": 4, "outputs": [] }, { @@ -234,7 +234,7 @@ "metadata": { "id": "u3lTK6HWhbFV" }, - "execution_count": 12, + "execution_count": 5, "outputs": [] }, { @@ -329,7 +329,7 @@ "metadata": { "id": "2WdLNnGTicBG" }, - "execution_count": 13, + "execution_count": 6, "outputs": [] }, { @@ -370,7 +370,7 @@ "metadata": { "id": "FoE8AuSDlPtr" }, - "execution_count": 14, + "execution_count": 7, "outputs": [] }, { @@ -386,9 +386,50 @@ "cell_type": "code", "source": [ "from typing import Optional, Tuple\n", - "\n", "DEFAULT_MASK_VALUE = -0.7 * float(jnp.finfo(jnp.dtype(\"float32\")).max)\n", "\n", + "class AttnStats(NamedTuple):\n", + " entropy: jax.Array # (bsz, n_layers, num_heads)\n", + " varentropy: jax.Array # (bsz, n_layers, num_heads)\n", + " n_layers: int\n", + " n_heads: int\n", + "\n", + " @classmethod\n", + " def new(cls, bsz: int, n_layers: int, n_heads: int) -> 'AttnStats':\n", + " return cls(\n", + " entropy=jnp.zeros((bsz, n_layers, n_heads), dtype=jnp.float32),\n", + " varentropy=jnp.zeros((bsz, n_layers, n_heads), dtype=jnp.float32),\n", + " n_layers=n_layers,\n", + " n_heads=n_heads\n", + " )\n", + "\n", + " @property\n", + " def avg_entropy(self):\n", + " return self.entropy.sum(axis=-1, keepdims=False) # Average across heads\n", + "\n", + " @property\n", + " def std_error(self):\n", + " return jnp.sqrt(jnp.mean(self.varentropy)) / (self.n_heads * self.n_layers)\n", + "\n", + " def update(self, scores: jax.Array, layer_idx: int):\n", + " # scores shape: (bsz, n_heads, seqlen, n_words)\n", + " probs = jax.nn.softmax(scores, axis=-1)\n", + " new_entropy = -jnp.sum(jnp.where(probs > 0, probs * jnp.log(probs), 0), axis=-1)\n", + " new_varentropy = jnp.sum(probs * (jnp.log(probs) + new_entropy[..., None])**2, axis=-1)\n", + "\n", + " # print(f\"Layer {layer_idx} - Scores shape: {scores.shape}, Probs shape: {probs.shape}\")\n", + " # print(f\"Layer {layer_idx} - New entropy shape: {new_entropy.shape}, Min: {jnp.min(new_entropy)}, Max: {jnp.max(new_entropy)}\")\n", + "\n", + " updated_stats = self._replace(\n", + " entropy=self.entropy.at[:, layer_idx, :].set(new_entropy),\n", + " varentropy=self.varentropy.at[:, layer_idx, :].set(new_varentropy)\n", + " )\n", + "\n", + " # print(f\"Layer {layer_idx} - Updated entropy shape: {updated_stats.entropy.shape}\")\n", + " # print(f\"Layer {layer_idx} - Updated entropy for this layer: {updated_stats.entropy[:, layer_idx, :]}\")\n", + "\n", + " return updated_stats\n", + "\n", "\n", "#@partial(jax.jit, static_argnames=(\"eps\"))\n", "def rms_norm(x: jax.Array, w: jax.Array, eps: float = 1e-6) -> jax.Array:\n", @@ -420,8 +461,8 @@ " keys = jnp.transpose(keys, (0, 2, 3, 1)) # (bs, n_heads, head_dim, cache_len + seqlen)\n", " values = jnp.transpose(values, (0, 2, 1, 3)) # (bs, n_heads, cache_len + seqlen, head_dim)\n", " scores = jnp.matmul(xq, keys)\n", - " scores = scores / jnp.sqrt(model_params.head_dim)\n", - " scores = scores.astype(jnp.float32) # Always do attention softmax at float32\n", + " pre_scores = scores / jnp.sqrt(model_params.head_dim)\n", + " scores = pre_scores.astype(jnp.float32) # Always do attention softmax at float32\n", " if cur_pos == 0:\n", " scores = scores + attn_mask\n", " mask = jnp.where(scores != 0.0, scores, DEFAULT_MASK_VALUE)\n", @@ -430,7 +471,7 @@ " output = jnp.matmul(scores, values)\n", " output = jnp.swapaxes(output, 1, 2).reshape(xq.shape[0], xq.shape[2], -1)\n", " out = jnp.dot(output, layer_weights.wo.T)\n", - " return out, kvcache\n", + " return out, kvcache, pre_scores\n", "\n", "#@partial(jax.jit)\n", "def feed_forward(x: jax.Array, layer_weights: LayerWeights) -> jax.Array:\n", @@ -439,18 +480,24 @@ "#@partial(jax.jit, static_argnames=(\"model_params\", \"cur_pos\"))\n", "def xfmr(xfmr_weights: XfmrWeights, model_params: ModelParams, tokens: jax.Array, cur_pos: int, freqs_cis: jax.Array, kvcache: KVCache, attn_mask: Optional[jax.Array]=None) -> Tuple[jax.Array, KVCache]:\n", " h = xfmr_weights.tok_embeddings[tokens]\n", + " attn_stats = AttnStats.new(\n", + " bsz=tokens.shape[0],\n", + " n_layers=model_params.n_layers,\n", + " n_heads=model_params.n_local_heads\n", + " )\n", " for i in range(model_params.n_layers):\n", " norm_x = rms_norm(h, xfmr_weights.layer_weights[i].attention_norm)\n", - " h_attn, kvcache = attention(norm_x, xfmr_weights.layer_weights[i], model_params, cur_pos, i, freqs_cis, kvcache, attn_mask=attn_mask)\n", + " h_attn, kvcache, scores = attention(norm_x, xfmr_weights.layer_weights[i], model_params, cur_pos, i, freqs_cis, kvcache, attn_mask=attn_mask)\n", + " attn_stats = attn_stats.update(scores[:,:,-1,:], i)\n", " h = h + h_attn\n", " h = h + feed_forward(rms_norm(h, xfmr_weights.layer_weights[i].ffn_norm), xfmr_weights.layer_weights[i])\n", " logits = jnp.dot(rms_norm(h, xfmr_weights.norm), xfmr_weights.output.T)\n", - " return logits, kvcache" + " return logits, kvcache, scores, attn_stats" ], "metadata": { "id": "oQe0q_Jzlap2" }, - "execution_count": 15, + "execution_count": 8, "outputs": [] }, { @@ -642,69 +689,152 @@ " varentropy = jnp.sum(probs * (log_probs / LN_2 + entropy[..., None])**2, axis=axis)\n", " return entropy, varentropy\n", "\n", - "\n", "def multinomial_sample_one(probs_sort: jax.Array, key) -> jax.Array:\n", - " \"\"\"Samples one token from a multinomial distribution with sorted probabilities.\"\"\"\n", - " q = jax.random.exponential(key=key, shape=probs_sort.shape)\n", - " return jnp.argmax(probs_sort / q, axis=-1, keepdims=True).astype(jnp.int32)\n", - "\n", - "\n", - "def _sample(logits: jax.Array, temperature=0.666, top_p=0.90, top_k=27, key=jax.random.PRNGKey(1337)) -> jax.Array:\n", - " bsz = logits.shape[0]\n", - " logit = logits[:, -1]\n", - " probs = jax.nn.softmax(logit / temperature, axis=-1)\n", - "\n", - " # Apply top-k sampling\n", - " top_k_probs, top_k_indices = jax.lax.top_k(probs, k=top_k)\n", - " probs_sort_jax = jnp.flip(top_k_probs, axis=-1)\n", - " probs_idx_jax = jnp.flip(top_k_indices, axis=-1)\n", - " probs_sum_jax = jnp.cumsum(probs_sort_jax, axis=-1)\n", - "\n", - " # Apply top-p sampling\n", - " mask_jax = jnp.where(probs_sum_jax - probs_sort_jax > top_p, True, False) # Use jnp.where\n", - " probs_sort_jax = probs_sort_jax * (1 - mask_jax) # Set values to 0.0 using multiplication\n", - " probs_sort_jax = probs_sort_jax / jnp.sum(probs_sort_jax, axis=-1, keepdims=True)\n", - "\n", - " next_token_jax = multinomial_sample_one(probs_sort_jax, key)\n", - " next_token_g_jax = jnp.take_along_axis(probs_idx_jax, next_token_jax.reshape(bsz, 1), axis=-1)\n", - " return next_token_g_jax.astype(jnp.int32)\n", - "\n", + " \"\"\"Samples one token from a multinomial distribution with sorted probabilities.\"\"\"\n", + " q = jax.random.exponential(key=key, shape=probs_sort.shape)\n", + " return jnp.argmax(probs_sort / q, axis=-1, keepdims=True).astype(jnp.int32)\n", + "\n", + "def _sample(logits: jax.Array, temperature=0.666, top_p=0.90, top_k=27, min_p: float = 0.0, key=jax.random.PRNGKey(1337)) -> jax.Array:\n", + " bsz = logits.shape[0]\n", + " logit = logits[:, -1]\n", + " probs = jax.nn.softmax(logit / temperature, axis=-1)\n", + "\n", + " # Apply min_p sampling\n", + " if min_p > 0.0:\n", + " p_max = jnp.max(probs, axis=-1, keepdims=True)\n", + " indices_to_remove = probs < (min_p * p_max)\n", + " logit = jnp.where(indices_to_remove, jnp.full_like(logit, float('-inf')), logit)\n", + "\n", + " # Apply top-k sampling\n", + " top_k_probs, top_k_indices = jax.lax.top_k(probs, k=top_k)\n", + " probs_sort = jnp.flip(top_k_probs, axis=-1)\n", + " probs_idx = jnp.flip(top_k_indices, axis=-1)\n", + " probs_sum = jnp.cumsum(probs_sort, axis=-1)\n", + " # Apply top-p sampling\n", + " mask = jnp.where(probs_sum - probs_sort > top_p, 1.0, 0.0)\n", + " probs_sort = probs_sort * (1 - mask)\n", + " probs_sort = probs_sort / jnp.sum(probs_sort, axis=-1, keepdims=True)\n", + " next_token = multinomial_sample_one(probs_sort, key)\n", + " next_token_g = jnp.take_along_axis(probs_idx, next_token.reshape(bsz, 1), axis=-1)\n", + " return next_token_g.astype(jnp.int32)\n", + "\n", + "def calculate_metrics(logits: jnp.ndarray, attention_scores: jnp.ndarray) -> Dict[str, jnp.ndarray]:\n", + " entropy, varentropy = calculate_varentropy_logsoftmax(logits)\n", + "\n", + " attention_probs = jax.nn.softmax(attention_scores, axis=-1)\n", + " attn_entropy = -jnp.sum(attention_probs * jnp.log2(jnp.clip(attention_probs, 1e-10, 1.0)), axis=-1)\n", + " attn_varentropy = jnp.var(attn_entropy, axis=-1)\n", + "\n", + " mean_attention = jnp.mean(attention_probs, axis=1)\n", + " agreement = jnp.mean(jnp.abs(attention_probs - mean_attention[:, None, :]), axis=(1, 2))\n", + "\n", + " interaction_strength = jnp.mean(jnp.abs(attention_scores), axis=(1, 2, 3))\n", + "\n", + " return {\n", + " \"logits_entropy\": jnp.mean(entropy),\n", + " \"logits_varentropy\": jnp.mean(varentropy),\n", + " \"attn_entropy\": jnp.mean(attn_entropy),\n", + " \"attn_varentropy\": jnp.mean(attn_varentropy),\n", + " \"agreement\": jnp.mean(agreement),\n", + " \"interaction_strength\": interaction_strength\n", + " }\n", "\n", - "def sample(gen_tokens: jax.Array, logits: jax.Array, temperature=0.666, top_p=0.90, top_k=27, key=jax.random.PRNGKey(1337)) -> jax.Array:\n", - " ent, vent = calculate_varentropy_logsoftmax(logits)\n", + "def adaptive_sample(logits: jax.Array, metrics: Dict[str, jnp.ndarray],\n", + " gen_tokens: jax.Array, n_samples: int,\n", + " base_temp: float = 0.666, base_top_p: float = 0.90, base_top_k: int = 40, base_min_p: float = 0.03, # Turn this down to 0.01 to reduce the shoggoth\n", + " key: jax.random.PRNGKey = jax.random.PRNGKey(1337)) -> jax.Array:\n", + " logits_uncertainty = metrics[\"logits_entropy\"] + metrics[\"logits_varentropy\"]\n", + " attn_uncertainty = metrics[\"attn_entropy\"] + metrics[\"attn_varentropy\"]\n", + "\n", + " temperature = base_temp * (1 + 0.3 * logits_uncertainty + 0.2 * attn_uncertainty - 0.2 * metrics[\"agreement\"])\n", + " top_p = jnp.clip(base_top_p * (1 + 0.1 * metrics[\"attn_varentropy\"]), 0.1, 1.0)\n", + " top_k = int(jnp.clip(\n", + " jnp.round(base_top_k * (1 + 0.3 * metrics[\"interaction_strength\"].item() - 0.2 * metrics[\"agreement\"].item())),\n", + " a_min=1,\n", + " a_max=100\n", + " ))\n", + " min_p = jnp.clip(base_min_p * (1 - 0.5 * logits_uncertainty), 0.01, 0.5)\n", + "\n", + " keys = jax.random.split(key, n_samples)\n", + "\n", + " samples = []\n", + " for sample_key in keys:\n", + " sample = _sample(logits, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, key=sample_key)\n", + " samples.append(sample)\n", + "\n", + " def score_sample(sample):\n", + " log_prob = jnp.sum(jax.nn.log_softmax(logits) * jax.nn.one_hot(sample, logits.shape[-1]))\n", + " confidence_score = (\n", + " (1 - metrics[\"logits_entropy\"]) * 0.1 +\n", + " (1 - metrics[\"attn_entropy\"]) * 0.2 +\n", + " (1 - metrics[\"logits_varentropy\"]) * 0.3 +\n", + " (1 - metrics[\"attn_varentropy\"]) * 0.4 +\n", + " metrics[\"agreement\"] * 0.5 +\n", + " metrics[\"interaction_strength\"] * 0.6\n", + " )\n", + " return log_prob + confidence_score\n", + "\n", + " sample_scores = [score_sample(sample) for sample in samples]\n", + " best_sample_idx = jnp.argmax(jnp.array(sample_scores))\n", + " return samples[best_sample_idx]\n", + "\n", + "# I am absolutely appaled that these random hyperparams are virtually impossible to beat with a more sophisticated approach.\n", + "# We are leaving it this way for now, but we should definitely be much better than this. Have some self respect.\n", + "def sample(gen_tokens: jax.Array, logits: jax.Array, attention_scores: jax.Array,\n", + " temperature=0.666, top_p=0.90, top_k=27, min_p: float = 0.0, key=jax.random.PRNGKey(1337)) -> jax.Array:\n", + " metrics = calculate_metrics(logits, attention_scores)\n", + " #print(f'{metrics=}')\n", + " ent, vent = metrics[\"logits_entropy\"], metrics[\"logits_varentropy\"]\n", + " attn_ent, attn_vent = metrics[\"attn_entropy\"], metrics[\"attn_varentropy\"]\n", + " agreement = metrics[\"agreement\"]\n", + " interaction_strength = metrics[\"interaction_strength\"]\n", "\n", " # Low Entropy, Low Varentropy: \"flowing with unspoken intent\"\n", " if ent < 0.1 and vent < 0.1:\n", " return jnp.argmax(logits[:, -1], axis=-1, keepdims=True).astype(jnp.int32)\n", "\n", " # High Entropy, Low Varentropy: \"treading carefully, asking clarifying questions\"\n", - " elif ent > 5.0 and vent < 0.1:\n", + " elif ent > 3.0 and vent < 0.1:\n", " # Insert a clarifying question token if not already present\n", " if not jnp.isin(gen_tokens[:,-1], 2564).any():\n", " return jnp.array([[2564]]) # Assuming 2564 is our \"ask clarifying question\" token\n", " else:\n", " # If we've just asked a question, sample with slightly higher temperature\n", - " return _sample(logits, temperature=min(1.3, temperature * 1.5))\n", + " temp_adj = 1.3 + 0.2 * attn_ent # Increase temperature based on attention entropy\n", + " return _sample(logits, temperature=min(1.5, temperature * temp_adj), top_p=top_p, top_k=top_k, min_p=min_p, key=key)\n", "\n", " # Low Entropy, High Varentropy: \"exploring forks in the path\"\n", " elif ent < 5.0 and vent > 5.0:\n", - " # TODO(xjdr): Implement proper branching logic\n", - " # Return top-k tokens to allow for branching\n", - " #top_k_values, top_k_indices = jax.lax.top_k(logits[:, -1], k=top_k)\n", - " #return top_k_indices\n", - " return _sample(logits, temperature=min(1.2, temperature * 1.5))\n", + " temp_adj = 1.2 + 0.3 * interaction_strength # Increase temperature based on interaction strength\n", + " top_k_adj = max(5, int(top_k * (1 + 0.5 * (1 - agreement)))) # Increase top_k when agreement is low\n", + " return _sample(logits, temperature=min(1.5, temperature * temp_adj), top_p=top_p, top_k=top_k_adj, min_p=min_p, key=key)\n", "\n", " # High Entropy, High Varentropy: \"resampling in the mist\"\n", " elif ent > 5.0 and vent > 5.0:\n", - " # Use high temperature and min_p sampling\n", - " return _sample(logits, temperature=max(2.0, temperature * 3))\n", + " # Use high temperature and adjusted top_p based on attention metrics\n", + " temp_adj = 2.0 + 0.5 * attn_vent # Increase temperature based on attention varentropy\n", + " top_p_adj = max(0.5, top_p - 0.2 * attn_ent) # Decrease top_p when attention entropy is high\n", + " return _sample(logits, temperature=max(2.0, temperature * temp_adj), top_p=top_p_adj, top_k=top_k, min_p=min_p, key=key)\n", "\n", - " # Middle ground: smooth transition\n", + " # Middle ground: use adaptive sampling\n", " else:\n", " # Interpolate temperature based on entropy and varentropy\n", - " t = jnp.clip((ent + vent) / 10.0, 0.5, 2.0)\n", - " return _sample(logits, temperature=t * temperature)\n", - "\n", + " #t = jnp.clip((ent + vent) / 10.0, 0.5, 2.0)\n", + " # Adjust temperature and top_k based on attention metrics\n", + " #temp_adj = t + 0.2 * attn_ent + 0.1 * attn_vent\n", + " #top_k_adj = max(5, int(top_k * (1 + 0.3 * interaction_strength - 0.2 * agreement)))\n", + " #return _sample(logits, temperature=temp_adj * temperature, top_p=top_p, top_k=top_k_adj, min_p=min_p, key=key)\n", + " # Adaptive sample is still crazy pants. Leave the more stable code above here for now.\n", + " return adaptive_sample(\n", + " logits,\n", + " metrics,\n", + " gen_tokens,\n", + " n_samples=12,\n", + " base_temp=temperature,\n", + " base_top_p=top_p,\n", + " base_top_k=top_k,\n", + " key=key\n", + " )\n", "\n", "def main():\n", " model_params = LLAMA_1B_PARAMS\n", @@ -731,17 +861,17 @@ " attn_mask = build_attn_mask(seqlen, cur_pos)\n", " freqs_cis = precompute_freqs_cis(model_params.head_dim, model_params.max_seq_len, model_params.rope_theta, model_params.use_scaled_rope)\n", " kvcache = KVCache.new(model_params.n_layers, bsz, model_params.max_seq_len, model_params.n_local_kv_heads, model_params.head_dim)\n", - " logits, kvcache = xfmr(xfmr_weights, model_params, tokens, cur_pos, freqs_cis[:seqlen], kvcache, attn_mask=attn_mask)\n", + " logits, kvcache, _, _ = xfmr(xfmr_weights, model_params, tokens, cur_pos, freqs_cis[:seqlen], kvcache, attn_mask=attn_mask)\n", " next_token = jnp.argmax(logits[:, -1], axis=-1, keepdims=True).astype(jnp.int32)\n", " gen_tokens = next_token\n", " print(tokenizer.decode([next_token.item()]), end='', flush=True)\n", " cur_pos = seqlen\n", " stop = jnp.array([128001, 128008, 128009])\n", " #stop = jnp.array(tokenizer.stop_tokens)\n", - " while cur_pos < 2048:\n", + " while cur_pos < 8192:\n", " cur_pos += 1\n", - " logits, kvcache = xfmr(xfmr_weights, model_params, next_token, cur_pos, freqs_cis[cur_pos:cur_pos+1], kvcache)\n", - " next_token = sample(gen_tokens, logits)\n", + " logits, kvcache, scores, stats = xfmr(xfmr_weights, model_params, next_token, cur_pos, freqs_cis[cur_pos:cur_pos+1], kvcache)\n", + " next_token = sample(gen_tokens, logits, scores)\n", " gen_tokens = jnp.concatenate((gen_tokens, next_token))\n", " print(tokenizer.decode(next_token.tolist()[0]), end='', flush=True)\n", " if jnp.isin(next_token, stop).any():\n", @@ -749,16 +879,16 @@ "\n", " print(prompt)\n", " generate(xfmr_weights, model_params, raw_tokens1)\n", - " print('\\n')\n", - " print(prompt2)\n", - " generate(xfmr_weights, model_params, raw_tokens2)\n", - " print('\\n')\n", - " print(prompt3)\n", - " generate(xfmr_weights, model_params, raw_tokens3)\n", - " print('\\n')\n", - " print(prompt4)\n", - " generate(xfmr_weights, model_params, raw_tokens4)\n", - " print('\\n')\n", + " # print('\\n')\n", + " # print(prompt2)\n", + " # generate(xfmr_weights, model_params, raw_tokens2)\n", + " # print('\\n')\n", + " # print(prompt3)\n", + " # generate(xfmr_weights, model_params, raw_tokens3)\n", + " # print('\\n')\n", + " # print(prompt4)\n", + " # generate(xfmr_weights, model_params, raw_tokens4)\n", + " # print('\\n')\n", "\n", " #print(bp1)\n", " #generate(xfmr_weights, model_params, base_raw_tokens1)\n", @@ -777,13 +907,12 @@ ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 + "base_uri": "https://localhost:8080/" }, "id": "DMFl-xY-mGlg", - "outputId": "1bc192bc-8545-4acd-dd15-654d5ee6819a" + "outputId": "a8c67b96-d719-4fda-c29b-4b519f23bc6b" }, - "execution_count": 16, + "execution_count": 11, "outputs": [ { "output_type": "stream", @@ -798,90 +927,14 @@ "\n", "\n", "\n", - "I'll attempt to represent my thought process in a more detailed and introspective way.\n", - "\n", - "The first thing I notice is that the numbers are the same, 9.9 and 9.11. So, in this case, I realize that these two numbers are actually equal, and I've immediately resolved the question.\n", - "\n", - "Now, I ask myself, \"What do I know about the numbers? Did I get some prior information or context that influences my answer? Was there a specific problem or question that led me to calculate 9.9 and 9.11?\"\n", + "I'm going to check both numbers using a mathematical approximation. \n", "\n", - "The first thing that comes to mind is that I think about the last digit of each number. For 9.9, the last digit is 9, and for 9.11, the last digit is also 1. This gives me a clear answer: 9.9 is indeed larger than 9.11.\n", - "\n", - "Hmm, let me think about this for a moment...<|eot_id|>\n", - "\n", - "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n", - "You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n", + "First, I'll consider 9.9 as 9.99 and 9.11. \n", "\n", - "What is the capital of Spain?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n", + "My brain, a large machine, isn't perfect, and this task is complex, but I can give you a straightforward response without delving into intricate thinking about 9.99. Let's call it as it is. Since neither is closer, my task is simplified: both 9.9 and 9.11 are equivalent to 9.9.\n", "\n", - "The capital of Spain is Madrid.<|eot_id|>\n", - "\n", - "<|start_header_id|>system<|end_header_id|>\n", - "You are an expert in composing functions. You are given a question and a set of possible functions.\n", - "Based on the question, you will need to make one or more function/tool calls to achieve the purpose.\n", - "If none of the functions can be used, point it out. If the given question lacks the parameters required by the function,also point it out. You should only return the function call in tools call sections.\n", - "If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]\n", - "You SHOULD NOT include any other text in the response.\n", - "Here is a list of functions in JSON format that you can invoke.[\n", - " {\n", - " \"name\": \"get_user_info\",\n", - " \"description\": \"Retrieve details for a specific user by their unique identifier. Note that the provided function is in Python 3 syntax.\",\n", - " \"parameters\": {\n", - " \"type\": \"dict\",\n", - " \"required\": [\n", - " \"user_id\"\n", - " ],\n", - " \"properties\": {\n", - " \"user_id\": {\n", - " \"type\": \"integer\",\n", - " \"description\": \"The unique identifier of the user. It is used to fetch the specific user details from the database.\"\n", - " },\n", - " \"special\": {\n", - " \"type\": \"string\",\n", - " \"description\": \"Any special information or parameters that need to be considered while fetching user details.\",\n", - " \"default\": \"none\"\n", - " }\n", - " }\n", - " }\n", - " }\n", - "]\n", - "<|eot_id|><|start_header_id|>user<|end_header_id|>\n", - "\n", - "Can you retrieve the details for the user with the ID 7890, who has black as their special request?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n", - "\n", - "[get_user_info(user_id=7890, special='black')]<|eot_id|>\n", - "\n", - "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n", - "You are a masterful story teller. you can paint with all the colors of the wind.<|eot_id|><|start_header_id|>user<|end_header_id|>\n", - "\n", - "Tell me a long and wonderful story about the adventures of the elven mage frieren and her band of heros<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n", - "\n", - "In the realm of Eridoria, where the sun dipped into the horizon and painted the sky with hues of crimson and gold, the village of Brindlemark lay nestled within a valley. It was a place of ancient magic, where the air was sweet with the scent of blooming wildflowers and the sound of whispering leaves rustled through the trees. Here, the elven mage, Frida, dwelled, her long, silver hair tangled with vines and her eyes shining like stars in the night sky.\n", - "\n", - "Frida was a master of the arcane arts, her knowledge of the mystical forces that governed the world passed down through generations of her elven bloodline. She spent her days studying the ancient tomes in the dusty library of the village, unlocking secrets of the universe and casting spells that could bend reality to her will. Her most trusted companion, a sturdy dwarf named Grimbold" - ] - }, - { - "output_type": "error", - "ename": "KeyboardInterrupt", - "evalue": "", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 307\u001b[0m \u001b[0;31m#print('\\n')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 308\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 309\u001b[0;31m \u001b[0mmain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mmain\u001b[0;34m()\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'\\n'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 292\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 293\u001b[0;31m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxfmr_weights\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mraw_tokens4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 294\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'\\n'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(xfmr_weights, model_params, tokens)\u001b[0m\n\u001b[1;32m 274\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mcur_pos\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m2048\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[0mcur_pos\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 276\u001b[0;31m \u001b[0mlogits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkvcache\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mxfmr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxfmr_weights\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnext_token\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcur_pos\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfreqs_cis\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcur_pos\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mcur_pos\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkvcache\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 277\u001b[0m \u001b[0mnext_token\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgen_tokens\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogits\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 278\u001b[0m \u001b[0mgen_tokens\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgen_tokens\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnext_token\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mxfmr\u001b[0;34m(xfmr_weights, model_params, tokens, cur_pos, freqs_cis, kvcache, attn_mask)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_params\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_layers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0mnorm_x\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrms_norm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxfmr_weights\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_weights\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mattention_norm\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 57\u001b[0;31m \u001b[0mh_attn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkvcache\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mattention\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnorm_x\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxfmr_weights\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_weights\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcur_pos\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfreqs_cis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkvcache\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattn_mask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattn_mask\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 58\u001b[0m \u001b[0mh\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mh\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mh_attn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0mh\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mh\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mfeed_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrms_norm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxfmr_weights\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_weights\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mffn_norm\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxfmr_weights\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_weights\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mattention\u001b[0;34m(x, layer_weights, model_params, cur_pos, layer_idx, freqs_cis, kvcache, attn_mask)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0mxv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlayer_weights\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbsz\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_params\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_local_kv_heads\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_params\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhead_dim\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0mxq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mapply_rotary_emb\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfreqs_cis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfreqs_cis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 31\u001b[0;31m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkvcache\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkvcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlayer_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcur_pos\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn_rep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 32\u001b[0m \u001b[0mxq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtranspose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# (bs, n_heads, seqlen, head_dim)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0mkeys\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtranspose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# (bs, n_heads, head_dim, cache_len + seqlen)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, xk, xv, layer_idx, cur_pos, n_rep)\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0mkeys\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrepeat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mck\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlayer_idx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn_rep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrepeat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcv\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlayer_idx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn_rep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mKVCache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mck\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/jax/_src/array.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, idx)\u001b[0m\n\u001b[1;32m 353\u001b[0m out.aval, sharding, [out], committed=False, _skip_checks=True)\n\u001b[1;32m 354\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 355\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlax_numpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_rewriting_take\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0midx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 356\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 357\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__iter__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/jax/_src/numpy/lax_numpy.py\u001b[0m in \u001b[0;36m_rewriting_take\u001b[0;34m(arr, idx, indices_are_sorted, unique_indices, mode, fill_value)\u001b[0m\n\u001b[1;32m 8951\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8952\u001b[0m \u001b[0mtreedef\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstatic_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdynamic_idx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_split_index_for_jit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8953\u001b[0;31m return _gather(arr, treedef, static_idx, dynamic_idx, indices_are_sorted,\n\u001b[0m\u001b[1;32m 8954\u001b[0m unique_indices, mode, fill_value)\n\u001b[1;32m 8955\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/jax/_src/numpy/lax_numpy.py\u001b[0m in \u001b[0;36m_gather\u001b[0;34m(arr, treedef, static_idx, dynamic_idx, indices_are_sorted, unique_indices, mode, fill_value)\u001b[0m\n\u001b[1;32m 8981\u001b[0m \u001b[0;31m# We avoid generating a gather when indexer.gather_indices.size is empty.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8982\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_empty_shape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgather_indices\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8983\u001b[0;31m y = lax.gather(\n\u001b[0m\u001b[1;32m 8984\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgather_indices\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdnums\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgather_slice_shape\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8985\u001b[0m \u001b[0munique_indices\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0munique_indices\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munique_indices\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/jax/_src/lax/slicing.py\u001b[0m in \u001b[0;36mgather\u001b[0;34m(operand, start_indices, dimension_numbers, slice_sizes, unique_indices, indices_are_sorted, mode, fill_value)\u001b[0m\n\u001b[1;32m 345\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 346\u001b[0m \u001b[0mfill_value\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 347\u001b[0;31m return gather_p.bind(\n\u001b[0m\u001b[1;32m 348\u001b[0m \u001b[0moperand\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart_indices\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdimension_numbers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdimension_numbers\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 349\u001b[0m \u001b[0mslice_sizes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanonicalize_shape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mslice_sizes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/jax/_src/core.py\u001b[0m in \u001b[0;36mbind\u001b[0;34m(self, *args, **params)\u001b[0m\n\u001b[1;32m 437\u001b[0m assert (not config.enable_checks.value or\n\u001b[1;32m 438\u001b[0m all(isinstance(arg, Tracer) or valid_jaxtype(arg) for arg in args)), args\n\u001b[0;32m--> 439\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind_with_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfind_top_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 440\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 441\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mbind_with_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/jax/_src/core.py\u001b[0m in \u001b[0;36mbind_with_trace\u001b[0;34m(self, trace, args, params)\u001b[0m\n\u001b[1;32m 441\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mbind_with_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 442\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mpop_level\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 443\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprocess_primitive\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfull_raise\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 444\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfull_lower\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmultiple_results\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mfull_lower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 445\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/jax/_src/core.py\u001b[0m in \u001b[0;36mprocess_primitive\u001b[0;34m(self, primitive, tracers, params)\u001b[0m\n\u001b[1;32m 947\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcall_impl_with_key_reuse_checks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprimitive\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprimitive\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimpl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mtracers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 949\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprimitive\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimpl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mtracers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 950\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 951\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mprocess_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprimitive\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtracers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/jax/_src/dispatch.py\u001b[0m in \u001b[0;36mapply_primitive\u001b[0;34m(prim, *args, **params)\u001b[0m\n\u001b[1;32m 86\u001b[0m \u001b[0mprev\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjax_jit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mswap_thread_local_state_disable_jit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 88\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 89\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 90\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjax_jit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mswap_thread_local_state_disable_jit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprev\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + "But the task isn't as simple, is it? This might raise a concern for an intelligent tool like me. While I'll give the exact solution with calculations:\n", + "The two numbers are, indeed, not only equal, but we need to recognize both sides equal in 9.99999 which implies it doesn't matter what either is as a base or an absolute value<|eot_id|>" ] } ]