-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
102 lines (87 loc) · 4.88 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from transformers import BertConfig, ElectraConfig
import argparse
Bert_6_layer = BertConfig(vocab_size = 30522,
num_hidden_layers = 6)
Bert_Small_Head_2_Config = BertConfig(vocab_size = 30522,
hidden_size = 264,
num_hidden_layers = 2,
num_attention_heads = 12,
intermediate_size = 1056,
hidden_act = "gelu",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1,
max_position_embeddings = 512,
initializer_range = 0.02,
layer_norm_eps = 1e-12,
pad_token_id = 0,
gradient_checkpointing = False)
Bert_Small_Head_4_Config = BertConfig(vocab_size = 30522,
hidden_size = 264,
num_hidden_layers = 4,
num_attention_heads = 12,
intermediate_size = 1056,
hidden_act = "gelu",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1,
max_position_embeddings = 512,
initializer_range = 0.02,
layer_norm_eps = 1e-12,
pad_token_id = 0,
gradient_checkpointing = False)
Bert_Small_Head_6_Config = BertConfig(vocab_size = 30522,
hidden_size = 264,
num_hidden_layers = 6,
num_attention_heads = 12,
intermediate_size = 1056,
hidden_act = "gelu",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1,
max_position_embeddings = 512,
initializer_range = 0.02,
layer_norm_eps = 1e-12,
pad_token_id = 0,
gradient_checkpointing = False)
Bert_Small_Head_Config = BertConfig(vocab_size = 30522,
hidden_size = 264,
num_hidden_layers = 12,
num_attention_heads = 12,
intermediate_size = 1056,
hidden_act = "gelu",
hidden_dropout_prob = 0.1,
attention_probs_dropout_prob = 0.1,
max_position_embeddings = 512,
initializer_range = 0.02,
layer_norm_eps = 1e-12,
pad_token_id = 0,
gradient_checkpointing = False)
def ret_args():
parser = argparse.ArgumentParser()
#parser.add_argument("--gpu_num", default='3', help="choose gpu number: 0, 1, 2, 3", type=int)
parser.add_argument("--model", default='bert', help="choose model architecture from: bert, roberta, ", type=str)
parser.add_argument("--pretrained", default='bert-base-uncased', help="choose model pretrained weight from: bert-base-uncased, bert-large-uncased, roberta-base, roberta-large", type=str)
parser.add_argument("--size", default='768', help="choose model size from: 768, 1024", type=int)
parser.add_argument("--lr", default=1e-5, help="insert learning rate", type=float)
parser.add_argument("--weight_decay", default=0.01, help="insert weight decay", type=float)
parser.add_argument("--layer_wise", default= 0.8, help = "layer wise dacay", type = float)
parser.add_argument("--epochs", default=3, help="insert epochs", type=int)
parser.add_argument("--batch_size", default=32, help="insert batch size", type=int)
parser.add_argument("--step_batch_size", default=32, help="insert step batch size", type=int)
parser.add_argument("--random_seed", default=23, help="insert step batch size", type=int)
args = parser.parse_args()
return args
def get_n_params(model):
pp = 0
for p in list(model.parameters()):
nn = 1
for s in list(p.size()):
nn = nn * s
pp += nn
return pp
if __name__ == "__main__":
from model.bert_layers import Bert_For_Att_output, Bert_For_Att_output_MLM
from torchsummary import summary as summary_
#configuration = Bert_Small_Config
#configuration = Bert_Small_Head_Config
configuration = Bert_Small_Head_6_Config
base_model = Bert_For_Att_output(configuration, True, None)
print(get_n_params(base_model) / 1e6)