-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
102 lines (76 loc) · 2.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import logging
import sys
sys.path.append('./games')
import coloredlogs
from Coach import Coach
# othello
from othello.OthelloGame import OthelloGame
from othello.pytorch.NNet import NNetWrapper as OthelloNet
# connect 4
from connect4.Connect4Game import Connect4Game
from connect4.pytorch.NNet import NNetWrapper as Connect4Net
# gobang
from gobang import GobangGame
from gobang.pytorch.NNet import NNetWrapper as GobangNet
# quoridor
#from quoridor.QuoridorGame import QuoridorGame
#from quoridor.pytorch.NNet import NNetWrapper as QuoridorNet
# gomoku
from gomoku.GomokuGame import GomokuGame
from gomoku.pytorch.NNet import NNetWrapper as GomokuNet
# yatch
from yacht.YachtDiceGame import YachtDiceGame
from yacht.pytorch.NNet import NNetWrapper as YachtDiceNet
# tafl
# dots and boxes
from dotsandboxes.DotsAndBoxesGame import DotsAndBoxesGame
from dotsandboxes.pytorch.NNet import NNetWrapper as DotboxNet
from utils import *
log = logging.getLogger(__name__)
coloredlogs.install(level='INFO') # Change this to DEBUG to see more info.
args = dotdict({
'numIters': 1000,
'numEps': 100, # Number of complete self-play games to simulate during a new iteration.
'tempThreshold': 15, #
'updateThreshold': 0.6, # During arena playoff, new neural net will be accepted if threshold or more of games are won.
'maxlenOfQueue': 200000, # Number of game examples to train the neural networks.
'numMCTSSims': 100, # Number of games moves for MCTS to simulate.
'arenaCompare': 30, # Number of games to play during arena play to determine if new net will be accepted.
'cpuct': 1,
'checkpoint': './temp/',
'load_model': True,
'load_folder_file': ('./temp','best.pth.tar'),
'numItersForTrainExamplesHistory': 20,
})
def main():
log.info('Loading %s...', GobangGame.__name__)
#g = OthelloGame(8)
#g = Connect4Game()
#g = GobangGame(8)
#g = QuoridorGame(5)
g = GomokuGame()
#g = YachtDiceGame()
#g = TaflGame()
#g = DotsAndBoxesGame(5)
log.info('Loading %s...', GobangNet.__name__)
#nnet = OthelloNet(g)
#nnet = Connect4Net(g)
#nnet = GobangNet(g)
#nnet = QuoridorGame(g)
nnet = GomokuNet(g)
#nnet = YachtNet(g)
#nnet = DotboxNet(g)
if args.load_model:
log.info('Loading checkpoint "%s/%s"...', args.load_folder_file[0], args.load_folder_file[1])
nnet.load_checkpoint(args.load_folder_file[0], args.load_folder_file[1])
else:
log.warning('Not loading a checkpoint!')
log.info('Loading the Coach...')
c = Coach(g, nnet, args)
if args.load_model:
log.info("Loading 'trainExamples' from file...")
#c.loadTrainExamples()
log.info('Starting the learning process 🎉')
c.learn()
if __name__ == "__main__":
main()