This project is based on the original Alphazero General Project. We extend our gratitude to the team for their foundational work, which inspired the creation of this application.
A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play based reinforcement learning based on the AlphaGo Zero paper (Silver et al). It is designed to be easy to adopt for any two-player turn-based adversarial game and any deep learning framework of your choice. A sample implementation has been provided for the game of Othello in PyTorch and Keras. An accompanying tutorial can be found here. We also have implementations for many other games like GoBang and TicTacToe.
To use a game of your choice, subclass the classes in Game.py
and NeuralNet.py
and implement their functions. Example implementations for Othello can be found in othello/OthelloGame.py
and othello/{pytorch,keras}/NNet.py
.
Coach.py
contains the core training loop and MCTS.py
performs the Monte Carlo Tree Search. The parameters for the self-play can be specified in main.py
. Additional neural network parameters are in othello/{pytorch,keras}/NNet.py
(cuda flag, batch size, epochs, learning rate etc.).
To start training a model for Othello:
python main.py
Choose your framework and game in main.py
.
For easy environment setup, we can use nvidia-docker. Once you have nvidia-docker set up, we can then simply run:
./setup_env.sh
to set up a (default: pyTorch) Jupyter docker container. We can now open a new terminal and enter:
docker exec -ti pytorch_notebook python main.py
Or you can install it directly by running:
pip3 install -r requirements.txt
We trained a PyTorch model for 6x6 Othello (~80 iterations, 100 episodes per iteration and 25 MCTS simulations per turn). This took about 3 days on an NVIDIA Tesla K80. The pretrained model (PyTorch) can be found in pretrained_models/othello/pytorch/
. You can play a game against it using pit.py
. Below is the performance of the model against a random and a greedy baseline with the number of iterations.