forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multisampling.cpp
567 lines (479 loc) · 22.4 KB
/
multisampling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*
* Vulkan Example - Multisampling using resolve attachments
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <vector>
#include <algorithm>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
struct {
struct {
VkImage image;
VkImageView view;
VkDeviceMemory memory;
} color;
struct {
VkImage image;
VkImageView view;
VkDeviceMemory memory;
} depth;
} multisampleTarget;
class VulkanExample : public VulkanExampleBase
{
public:
bool useSampleShading = false;
VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT;
vkglTF::Model model;
vks::Buffer uniformBuffer;
struct UBOVS {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(5.0f, -5.0f, 5.0f, 1.0f);
} uboVS;
struct {
VkPipeline MSAA;
VkPipeline MSAASampleShading;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Multisampling";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f));
camera.setTranslation(glm::vec3(2.5f, 2.5f, -7.5f));
settings.overlay = true;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.MSAA, nullptr);
vkDestroyPipeline(device, pipelines.MSAASampleShading, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Destroy MSAA target
vkDestroyImage(device, multisampleTarget.color.image, nullptr);
vkDestroyImageView(device, multisampleTarget.color.view, nullptr);
vkFreeMemory(device, multisampleTarget.color.memory, nullptr);
vkDestroyImage(device, multisampleTarget.depth.image, nullptr);
vkDestroyImageView(device, multisampleTarget.depth.view, nullptr);
vkFreeMemory(device, multisampleTarget.depth.memory, nullptr);
uniformBuffer.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable sample rate shading filtering if supported
if (deviceFeatures.sampleRateShading) {
enabledFeatures.sampleRateShading = VK_TRUE;
}
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
}
// Creates a multi sample render target (image and view) that is used to resolve
// into the visible frame buffer target in the render pass
void setupMultisampleTarget()
{
// Check if device supports requested sample count for color and depth frame buffer
assert((deviceProperties.limits.framebufferColorSampleCounts >= sampleCount) && (deviceProperties.limits.framebufferDepthSampleCounts >= sampleCount));
// Color target
VkImageCreateInfo info = vks::initializers::imageCreateInfo();
info.imageType = VK_IMAGE_TYPE_2D;
info.format = swapChain.colorFormat;
info.extent.width = width;
info.extent.height = height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.samples = sampleCount;
// Image will only be used as a transient target
info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &info, nullptr, &multisampleTarget.color.image));
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, multisampleTarget.color.image, &memReqs);
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
// We prefer a lazily allocated memory type
// This means that the memory gets allocated when the implementation sees fit, e.g. when first using the images
VkBool32 lazyMemTypePresent;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent);
if (!lazyMemTypePresent)
{
// If this is not available, fall back to device local memory
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.color.memory));
vkBindImageMemory(device, multisampleTarget.color.image, multisampleTarget.color.memory, 0);
// Create image view for the MSAA target
VkImageViewCreateInfo viewInfo = vks::initializers::imageViewCreateInfo();
viewInfo.image = multisampleTarget.color.image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = swapChain.colorFormat;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.color.view));
// Depth target
info.imageType = VK_IMAGE_TYPE_2D;
info.format = depthFormat;
info.extent.width = width;
info.extent.height = height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.samples = sampleCount;
// Image will only be used as a transient target
info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &info, nullptr, &multisampleTarget.depth.image));
vkGetImageMemoryRequirements(device, multisampleTarget.depth.image, &memReqs);
memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent);
if (!lazyMemTypePresent)
{
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.depth.memory));
vkBindImageMemory(device, multisampleTarget.depth.image, multisampleTarget.depth.memory, 0);
// Create image view for the MSAA target
viewInfo.image = multisampleTarget.depth.image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = depthFormat;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.depth.view));
}
// Setup a render pass for using a multi sampled attachment
// and a resolve attachment that the msaa image is resolved
// to at the end of the render pass
void setupRenderPass()
{
// Overrides the virtual function of the base class
std::array<VkAttachmentDescription, 3> attachments = {};
// Multisampled attachment that we render to
attachments[0].format = swapChain.colorFormat;
attachments[0].samples = sampleCount;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// This is the frame buffer attachment to where the multisampled image
// will be resolved to and which will be presented to the swapchain
attachments[1].format = swapChain.colorFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// Multisampled depth attachment we render to
attachments[2].format = depthFormat;
attachments[2].samples = sampleCount;
attachments[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[2].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[2].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 2;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
// Resolve attachment reference for the color attachment
VkAttachmentReference resolveReference = {};
resolveReference.attachment = 1;
resolveReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorReference;
// Pass our resolve attachments to the sub pass
subpass.pResolveAttachments = &resolveReference;
subpass.pDepthStencilAttachment = &depthReference;
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassInfo = vks::initializers::renderPassCreateInfo();
renderPassInfo.attachmentCount = attachments.size();
renderPassInfo.pAttachments = attachments.data();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 2;
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass));
}
// Frame buffer attachments must match with render pass setup,
// so we need to adjust frame buffer creation to cover our
// multisample target
void setupFrameBuffer()
{
// Overrides the virtual function of the base class
std::array<VkImageView, 3> attachments;
setupMultisampleTarget();
attachments[0] = multisampleTarget.color.view;
// attachment[1] = swapchain image
attachments[2] = multisampleTarget.depth.view;
VkFramebufferCreateInfo frameBufferCreateInfo = {};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.pNext = NULL;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = attachments.size();
frameBufferCreateInfo.pAttachments = attachments.data();
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[1] = swapChain.buffers[i].view;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[3];
// Clear to a white background for higher contrast
clearValues[0].color = { { 1.0f, 1.0f, 1.0f, 1.0f } };
clearValues[1].color = { { 1.0f, 1.0f, 1.0f, 1.0f } };
clearValues[2].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 3;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, useSampleShading ? pipelines.MSAASampleShading : pipelines.MSAA);
model.draw(drawCmdBuffers[i], vkglTF::RenderFlags::BindImages, pipelineLayout);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
model.loadFromFile(getAssetPath() + "models/voyager.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY);
}
void setupDescriptorPool()
{
// Example uses one ubo and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
const std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Layout uses set 0 for passing vertex shader ubo and set 1 for fragment shader images (taken from glTF model)
const std::vector<VkDescriptorSetLayout> setLayouts = {
descriptorSetLayout,
vkglTF::descriptorSetLayoutImage,
};
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), 2);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
// Setup multi sampling
VkPipelineMultisampleStateCreateInfo multisampleState{};
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
// Number of samples to use for rasterization
multisampleState.rasterizationSamples = sampleCount;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color });
// MSAA rendering pipeline
shaderStages[0] = loadShader(getShadersPath() + "multisampling/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "multisampling/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.MSAA));
if (vulkanDevice->features.sampleRateShading)
{
// MSAA with sample shading pipeline
// Sample shading enables per-sample shading to avoid shader aliasing and smooth out e.g. high frequency texture maps
// Note: This will trade performance for are more stable image
// Enable per-sample shading (instead of per-fragment)
multisampleState.sampleShadingEnable = VK_TRUE;
// Minimum fraction for sample shading
multisampleState.minSampleShading = 0.25f;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.MSAASampleShading));
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffer,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.model = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
sampleCount = getMaxUsableSampleCount();
UIOverlay.rasterizationSamples = sampleCount;
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated) {
updateUniformBuffers();
}
}
// Returns the maximum sample count usable by the platform
VkSampleCountFlagBits getMaxUsableSampleCount()
{
VkSampleCountFlags counts = std::min(deviceProperties.limits.framebufferColorSampleCounts, deviceProperties.limits.framebufferDepthSampleCounts);
if (counts & VK_SAMPLE_COUNT_64_BIT) { return VK_SAMPLE_COUNT_64_BIT; }
if (counts & VK_SAMPLE_COUNT_32_BIT) { return VK_SAMPLE_COUNT_32_BIT; }
if (counts & VK_SAMPLE_COUNT_16_BIT) { return VK_SAMPLE_COUNT_16_BIT; }
if (counts & VK_SAMPLE_COUNT_8_BIT) { return VK_SAMPLE_COUNT_8_BIT; }
if (counts & VK_SAMPLE_COUNT_4_BIT) { return VK_SAMPLE_COUNT_4_BIT; }
if (counts & VK_SAMPLE_COUNT_2_BIT) { return VK_SAMPLE_COUNT_2_BIT; }
return VK_SAMPLE_COUNT_1_BIT;
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (vulkanDevice->features.sampleRateShading) {
if (overlay->header("Settings")) {
if (overlay->checkBox("Sample rate shading", &useSampleShading)) {
buildCommandBuffers();
}
}
}
}
};
VULKAN_EXAMPLE_MAIN()