forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
computecullandlod.cpp
745 lines (621 loc) · 28.4 KB
/
computecullandlod.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
/*
* Vulkan Example - Compute shader culling and LOD using indirect rendering
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include <vector>
#include <random>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanglTFModel.h"
#include "frustum.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define INSTANCE_BUFFER_BIND_ID 1
#define ENABLE_VALIDATION false
// Total number of objects (^3) in the scene
#if defined(__ANDROID__)
#define OBJECT_COUNT 32
#else
#define OBJECT_COUNT 64
#endif
#define MAX_LOD_LEVEL 5
class VulkanExample : public VulkanExampleBase
{
public:
bool fixedFrustum = false;
// The model contains multiple versions of a single object with different levels of detail
vkglTF::Model lodModel;
// Per-instance data block
struct InstanceData {
glm::vec3 pos;
float scale;
};
// Contains the instanced data
vks::Buffer instanceBuffer;
// Contains the indirect drawing commands
vks::Buffer indirectCommandsBuffer;
vks::Buffer indirectDrawCountBuffer;
// Indirect draw statistics (updated via compute)
struct {
uint32_t drawCount; // Total number of indirect draw counts to be issued
uint32_t lodCount[MAX_LOD_LEVEL + 1]; // Statistics for number of draws per LOD level (written by compute shader)
} indirectStats;
// Store the indirect draw commands containing index offsets and instance count per object
std::vector<VkDrawIndexedIndirectCommand> indirectCommands;
struct {
glm::mat4 projection;
glm::mat4 modelview;
glm::vec4 cameraPos;
glm::vec4 frustumPlanes[6];
} uboScene;
struct {
vks::Buffer scene;
} uniformData;
struct {
VkPipeline plants;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Resources for the compute part of the example
struct {
vks::Buffer lodLevelsBuffers; // Contains index start and counts for the different lod levels
VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics)
VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics)
VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers
VkFence fence; // Synchronization fence to avoid rewriting compute CB if still in use
VkSemaphore semaphore; // Used as a wait semaphore for graphics submission
VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout
VkDescriptorSet descriptorSet; // Compute shader bindings
VkPipelineLayout pipelineLayout; // Layout of the compute pipeline
VkPipeline pipeline; // Compute pipeline for updating particle positions
} compute;
// View frustum for culling invisible objects
vks::Frustum frustum;
uint32_t objectCount = 0;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Vulkan Example - Compute cull and lod";
camera.type = Camera::CameraType::firstperson;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setTranslation(glm::vec3(0.5f, 0.0f, 0.0f));
camera.movementSpeed = 5.0f;
settings.overlay = true;
memset(&indirectStats, 0, sizeof(indirectStats));
}
~VulkanExample()
{
vkDestroyPipeline(device, pipelines.plants, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
instanceBuffer.destroy();
indirectCommandsBuffer.destroy();
uniformData.scene.destroy();
indirectDrawCountBuffer.destroy();
compute.lodLevelsBuffers.destroy();
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroyFence(device, compute.fence, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
vkDestroySemaphore(device, compute.semaphore, nullptr);
}
virtual void getEnabledFeatures()
{
// Enable multi draw indirect if supported
if (deviceFeatures.multiDrawIndirect) {
enabledFeatures.multiDrawIndirect = VK_TRUE;
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.18f, 0.27f, 0.5f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
// Mesh containing the LODs
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.plants);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &lodModel.vertices.buffer, offsets);
vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], lodModel.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
if (vulkanDevice->features.multiDrawIndirect)
{
vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, 0, indirectCommands.size(), sizeof(VkDrawIndexedIndirectCommand));
}
else
{
// If multi draw is not available, we must issue separate draw commands
for (auto j = 0; j < indirectCommands.size(); j++)
{
vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, j * sizeof(VkDrawIndexedIndirectCommand), 1, sizeof(VkDrawIndexedIndirectCommand));
}
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
lodModel.loadFromFile(getAssetPath() + "models/suzanne_lods.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
// Add memory barrier to ensure that the indirect commands have been consumed before the compute shader updates them
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.buffer = indirectCommandsBuffer.buffer;
bufferBarrier.size = indirectCommandsBuffer.descriptor.range;
bufferBarrier.srcAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT;
bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
compute.commandBuffer,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
1, &bufferBarrier,
0, nullptr);
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
// Dispatch the compute job
// The compute shader will do the frustum culling and adjust the indirect draw calls depending on object visibility.
// It also determines the lod to use depending on distance to the viewer.
vkCmdDispatch(compute.commandBuffer, objectCount / 16, 1, 1);
// Add memory barrier to ensure that the compute shader has finished writing the indirect command buffer before it's consumed
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
bufferBarrier.dstAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT;
bufferBarrier.buffer = indirectCommandsBuffer.buffer;
bufferBarrier.size = indirectCommandsBuffer.descriptor.range;
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
vkCmdPipelineBarrier(
compute.commandBuffer,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
VK_FLAGS_NONE,
0, nullptr,
1, &bufferBarrier,
0, nullptr);
// todo: barrier for indirect stats buffer?
vkEndCommandBuffer(compute.commandBuffer);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT,0),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.scene.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// This example uses two different input states, one for the instanced part and one for non-instanced rendering
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
// Vertex input bindings
// The instancing pipeline uses a vertex input state with two bindings
bindingDescriptions = {
// Binding point 0: Mesh vertex layout description at per-vertex rate
vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(vkglTF::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
// Binding point 1: Instanced data at per-instance rate
vks::initializers::vertexInputBindingDescription(INSTANCE_BUFFER_BIND_ID, sizeof(InstanceData), VK_VERTEX_INPUT_RATE_INSTANCE)
};
// Vertex attribute bindings
attributeDescriptions = {
// Per-vertex attributees
// These are advanced for each vertex fetched by the vertex shader
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, pos)), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, normal)), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, color)), // Location 2: Texture coordinates
// Per-Instance attributes
// These are fetched for each instance rendered
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(InstanceData, pos)), // Location 4: Position
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32_SFLOAT, offsetof(InstanceData, scale)), // Location 5: Scale
};
inputState.pVertexBindingDescriptions = bindingDescriptions.data();
inputState.pVertexAttributeDescriptions = attributeDescriptions.data();
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(bindingDescriptions.size());
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCreateInfo.pVertexInputState = &inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
// Indirect (and instanced) pipeline for the plants
shaderStages[0] = loadShader(getShadersPath() + "computecullandlod/indirectdraw.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computecullandlod/indirectdraw.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.plants));
}
void prepareBuffers()
{
objectCount = OBJECT_COUNT * OBJECT_COUNT * OBJECT_COUNT;
vks::Buffer stagingBuffer;
std::vector<InstanceData> instanceData(objectCount);
indirectCommands.resize(objectCount);
// Indirect draw commands
for (uint32_t x = 0; x < OBJECT_COUNT; x++)
{
for (uint32_t y = 0; y < OBJECT_COUNT; y++)
{
for (uint32_t z = 0; z < OBJECT_COUNT; z++)
{
uint32_t index = x + y * OBJECT_COUNT + z * OBJECT_COUNT * OBJECT_COUNT;
indirectCommands[index].instanceCount = 1;
indirectCommands[index].firstInstance = index;
// firstIndex and indexCount are written by the compute shader
}
}
}
indirectStats.drawCount = static_cast<uint32_t>(indirectCommands.size());
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
indirectCommands.size() * sizeof(VkDrawIndexedIndirectCommand),
indirectCommands.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&indirectCommandsBuffer,
stagingBuffer.size));
vulkanDevice->copyBuffer(&stagingBuffer, &indirectCommandsBuffer, queue);
stagingBuffer.destroy();
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indirectDrawCountBuffer,
sizeof(indirectStats)));
// Map for host access
VK_CHECK_RESULT(indirectDrawCountBuffer.map());
// Instance data
for (uint32_t x = 0; x < OBJECT_COUNT; x++)
{
for (uint32_t y = 0; y < OBJECT_COUNT; y++)
{
for (uint32_t z = 0; z < OBJECT_COUNT; z++)
{
uint32_t index = x + y * OBJECT_COUNT + z * OBJECT_COUNT * OBJECT_COUNT;
instanceData[index].pos = glm::vec3((float)x, (float)y, (float)z) - glm::vec3((float)OBJECT_COUNT / 2.0f);
instanceData[index].scale = 2.0f;
}
}
}
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
instanceData.size() * sizeof(InstanceData),
instanceData.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&instanceBuffer,
stagingBuffer.size));
vulkanDevice->copyBuffer(&stagingBuffer, &instanceBuffer, queue);
stagingBuffer.destroy();
// Shader storage buffer containing index offsets and counts for the LODs
struct LOD
{
uint32_t firstIndex;
uint32_t indexCount;
float distance;
float _pad0;
};
std::vector<LOD> LODLevels;
uint32_t n = 0;
for (auto node : lodModel.nodes)
{
LOD lod;
lod.firstIndex = node->mesh->primitives[0]->firstIndex; // First index for this LOD
lod.indexCount = node->mesh->primitives[0]->indexCount; // Index count for this LOD
lod.distance = 5.0f + n * 5.0f; // Starting distance (to viewer) for this LOD
n++;
LODLevels.push_back(lod);
}
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
LODLevels.size() * sizeof(LOD),
LODLevels.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.lodLevelsBuffers,
stagingBuffer.size));
vulkanDevice->copyBuffer(&stagingBuffer, &compute.lodLevelsBuffers, queue);
stagingBuffer.destroy();
// Scene uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformData.scene,
sizeof(uboScene)));
VK_CHECK_RESULT(uniformData.scene.map());
updateUniformBuffer(true);
}
void prepareCompute()
{
// Get a compute capable device queue
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Create compute pipeline
// Compute pipelines are created separate from graphics pipelines even if they use the same queue (family index)
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Instance input data buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
0),
// Binding 1: Indirect draw command output buffer (input)
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
1),
// Binding 2: Uniform buffer with global matrices (input)
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
2),
// Binding 3: Indirect draw stats (output)
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
3),
// Binding 4: LOD info (input)
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
4),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&compute.descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&compute.descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
{
// Binding 0: Instance input data buffer
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
0,
&instanceBuffer.descriptor),
// Binding 1: Indirect draw command output buffer
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
&indirectCommandsBuffer.descriptor),
// Binding 2: Uniform buffer with global matrices
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
2,
&uniformData.scene.descriptor),
// Binding 3: Atomic counter (written in shader)
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
3,
&indirectDrawCountBuffer.descriptor),
// Binding 4: LOD info
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
4,
&compute.lodLevelsBuffers.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL);
// Create pipeline
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computecullandlod/cull.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
// Use specialization constants to pass max. level of detail (determined by no. of meshes)
VkSpecializationMapEntry specializationEntry{};
specializationEntry.constantID = 0;
specializationEntry.offset = 0;
specializationEntry.size = sizeof(uint32_t);
uint32_t specializationData = static_cast<uint32_t>(lodModel.nodes.size()) - 1;
VkSpecializationInfo specializationInfo;
specializationInfo.mapEntryCount = 1;
specializationInfo.pMapEntries = &specializationEntry;
specializationInfo.dataSize = sizeof(specializationData);
specializationInfo.pData = &specializationData;
computePipelineCreateInfo.stage.pSpecializationInfo = &specializationInfo;
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
// Separate command pool as queue family for compute may be different than graphics
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vks::initializers::commandBufferAllocateInfo(
compute.commandPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer));
// Fence for compute CB sync
VkFenceCreateInfo fenceCreateInfo = vks::initializers::fenceCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT);
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence));
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphore));
// Build a single command buffer containing the compute dispatch commands
buildComputeCommandBuffer();
}
void updateUniformBuffer(bool viewChanged)
{
if (viewChanged)
{
uboScene.projection = camera.matrices.perspective;
uboScene.modelview = camera.matrices.view;
if (!fixedFrustum)
{
uboScene.cameraPos = glm::vec4(camera.position, 1.0f) * -1.0f;
frustum.update(uboScene.projection * uboScene.modelview);
memcpy(uboScene.frustumPlanes, frustum.planes.data(), sizeof(glm::vec4) * 6);
}
}
memcpy(uniformData.scene.mapped, &uboScene, sizeof(uboScene));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Submit compute shader for frustum culling
// Wait for fence to ensure that compute buffer writes have finished
vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &compute.fence);
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
computeSubmitInfo.signalSemaphoreCount = 1;
computeSubmitInfo.pSignalSemaphores = &compute.semaphore;
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
// Submit graphics command buffer
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Wait on present and compute semaphores
std::array<VkPipelineStageFlags,2> stageFlags = {
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
};
std::array<VkSemaphore,2> waitSemaphores = {
semaphores.presentComplete, // Wait for presentation to finished
compute.semaphore // Wait for compute to finish
};
submitInfo.pWaitSemaphores = waitSemaphores.data();
submitInfo.waitSemaphoreCount = static_cast<uint32_t>(waitSemaphores.size());
submitInfo.pWaitDstStageMask = stageFlags.data();
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, compute.fence));
VulkanExampleBase::submitFrame();
// Get draw count from compute
memcpy(&indirectStats, indirectDrawCountBuffer.mapped, sizeof(indirectStats));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareCompute();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
{
return;
}
draw();
if (camera.updated)
{
updateUniformBuffer(true);
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Freeze frustum", &fixedFrustum)) {
updateUniformBuffer(true);
}
}
if (overlay->header("Statistics")) {
overlay->text("Visible objects: %d", indirectStats.drawCount);
for (uint32_t i = 0; i < MAX_LOD_LEVEL + 1; i++) {
overlay->text("LOD %d: %d", i, indirectStats.lodCount[i]);
}
}
}
};
VULKAN_EXAMPLE_MAIN()