We have provided code to reimplement baselines to ablate predictor, decoder, and encoder correpondingly.
The baselines are configured as the following:
method | mod | graph | gconv_unit_type | encoder | decoder |
---|---|---|---|---|---|
CVP (default) | cvp | fact_gc | n2e2n | traj | comb_late |
No-Factor [23] | noFactor | fact_fc | - | traj | noFactor |
No-Edge | cvp | fact_gc | noEdge | traj | comb_late |
Early-Feat | cvp | fact_gc | n2e2n | traj | comb_early |
Mid-Feat | cvp | fact_gc | n2e2n | traj | comb_mid |
Pixel | cvp | fact_gc | n2e2n | traj | cPix |
No-Z | cvp | fact_gc | n2e2n | noZ | comb_late |
FP [6] | cvp | fact_gc | n2e2n | fp | comb_late |
LP [6] | lp | fact_gc | n2e2n | lp | comb_late |
To run baseline, just set the non-default flag (in bold) to the corresponding one, since the default configuration is set to train our CVP.
Anyway, the remaining part kindly provides straightforward command which gives you the same config as the table shows:
- No-Factor: Generating Videos with Scene Dynamics, Vondrick et al. in NeurIPS'16
python train.py --gpu ${GPU_ID} --mod noFactor --graph fact_fc --decoder noFactor
- No-Edge:
python train.py --gpu ${GPU_ID} --gconv_unit_type noEdge
- Early-Feat
python train.py --decoder comb_early
- Mid-Feat
python train.py --decoder comb_mid
- Late-Feat (ours)
python train.py --decoder comb_late
- Pixel
python train.py --decoder cPix
The --encoder
could be traj
(ours), noZ
, fp
, or lp
.
- No-Z baseline
python train.py --encoder noZ
- FP (Fix-Prior): Stochastic Video Generation with a Learned Prior, Denton et al. in ICML'18
python train.py --encoder fp
- LP (Learned-Prior): Stochastic Video Generation with a Learned Prior, Denton et al. in ICML'18
python train.py --mod lp --encoder lp
All models could directly be evaluated by running:
python test.py --checkpoint ${PATH_TO_MODEL} --test_mod best_100