-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnp_mnist.py
190 lines (155 loc) · 6.49 KB
/
np_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
import random
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False, transform=transforms.ToTensor()),
batch_size=64, shuffle=False)
def get_context_idx(N):
idx = random.sample(range(0, 784), N)
idx = torch.tensor(idx, device=device)
return idx
def generate_grid(h, w):
rows = torch.linspace(0, 1, h, device=device)
cols = torch.linspace(0, 1, w, device=device)
grid = torch.stack( [cols.repeat(h, 1).t().contiguous().view(-1), rows.repeat(w)], dim=1)
grid = grid.unsqueeze(0)
return grid
def idx_to_y(idx, data):
y = torch.index_select(data, dim=1, index=idx)
return y
def idx_to_x(idx, batch_size):
x = torch.index_select(x_grid, dim=1, index=idx)
x = x.expand(batch_size, -1, -1)
return x
class NP(nn.Module):
def __init__(self, r_dim, z_dim):
super(NP, self).__init__()
self.r_dim = r_dim
self.z_dim = z_dim
self.h_1 = nn.Linear(3, 40)
self.h_2 = nn.Linear(40, 40)
self.h_3 = nn.Linear(40, self.r_dim)
self.r_to_z_mean = nn.Linear(self.r_dim, self.z_dim)
self.r_to_z_std = nn.Linear(self.r_dim, self.z_dim)
self.g_1 = nn.Linear(self.z_dim + 2, 40)
self.g_2 = nn.Linear(40, 40)
self.g_3 = nn.Linear(40, 40)
self.g_4 = nn.Linear(40, 40)
self.g_5 = nn.Linear(40, 1)
def h(self, x_y):
x_y = F.relu(self.h_1(x_y))
x_y = F.relu(self.h_2(x_y))
x_y = F.relu(self.h_3(x_y))
return x_y
def aggregate(self, r):
return torch.mean(r, dim=1)
def reparametrize(self, z):
mu, logvar = z
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z_sample = eps.mul(std).add_(mu)
z_sample = z_sample.unsqueeze(1).expand(-1, 784, -1)
return z_sample
def g(self, z_sample, x_target):
z_x = torch.cat([z_sample, x_target], dim=2)
input = F.relu(self.g_1(z_x))
input = F.relu(self.g_2(input))
input = F.relu(self.g_3(input))
input = F.relu(self.g_4(input))
input = torch.sigmoid(self.g_5(input))
return input
def xy_to_z_params(self, x, y):
x_y = torch.cat([x, y], dim=2)
r_i = self.h(x_y)
r = self.aggregate(r_i)
mu = self.r_to_z_mean(r)
logvar = self.r_to_z_std(r)
return mu, logvar
def forward(self, x_context, y_context, x_all=None, y_all=None):
z_context = self.xy_to_z_params(x_context, y_context)
if self.training:
z_all = self.xy_to_z_params(x_all, y_all)
else:
z_all = z_context
z_sample = self.reparametrize(z_all)
x_target = x_grid.expand(y_context.shape[0], -1, -1)
y_hat = self.g(z_sample, x_target)
return y_hat, z_all, z_context
def kl_div_gaussian(mu_q, logvar_q, mu_p, logvar_p):
var_p = torch.exp(logvar_p)
var_q = torch.exp(logvar_q)
kl_div = (var_q + (mu_q - mu_p)**2) / var_p - 1.0 + logvar_p - logvar_q
kl_div = 0.5 * kl_div.sum()
return kl_div
def np_loss(y_hat, y, z_all, z_context):
BCE = F.binary_cross_entropy(y_hat, y, reduction='sum')
KLD = kl_div_gaussian(z_all[0], z_all[1], z_context[0], z_context[1])
return BCE + KLD
model = NP(300, 300).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
x_grid = generate_grid(28, 28)
def train(epoch):
model.train()
train_loss = 0
for batch_idx, (y_all, _) in enumerate(train_loader):
batch_size = y_all.shape[0]
y_all = y_all.to(device).view(batch_size, -1, 1)
N = random.randint(1, 784)
context_idx = get_context_idx(N)
x_context = idx_to_x(context_idx, batch_size)
y_context = idx_to_y(context_idx, y_all)
x_all = x_grid.expand(batch_size, -1, -1)
optimizer.zero_grad()
y_hat, z_all, z_context = model(x_context, y_context, x_all, y_all)
loss = np_loss(y_hat, y_all, z_all, z_context)
loss.backward()
train_loss += loss.item()
optimizer.step()
print("Epoch {} Average Loss: {:.4f}".format(epoch, train_loss/len(train_loader.dataset)))
def test(epoch):
model.eval()
test_loss = 0
with torch.no_grad():
for i, (y_all, _) in enumerate(test_loader):
y_all = y_all.to(device).view(y_all.shape[0], -1, 1)
batch_size = y_all.shape[0]
N = 30
context_idx = get_context_idx(N)
x_context = idx_to_x(context_idx, batch_size)
y_context = idx_to_y(context_idx, y_all)
y_hat, z_all, z_context = model(x_context, y_context)
test_loss += np_loss(y_hat, y_all, z_all, z_context).item()
if i == 0:
plot_Ns = [10, 100, 300, 784]
num_examples = min(batch_size, 16)
for N in plot_Ns:
recons = []
context_idx = get_context_idx(N)
x_context = idx_to_x(context_idx, batch_size)
y_context = idx_to_y(context_idx, y_all)
for d in range(5):
y_hat, _, _ = model(x_context, y_context)
recons.append(y_hat[:num_examples])
recons = torch.cat(recons).view(-1, 1, 28, 28).expand(-1, 3, -1, -1)
background = torch.tensor([0., 0., 1.], device=device)
background = background.view(1, -1, 1).expand(num_examples, 3, 784).contiguous()
context_pixels = y_all[:num_examples].view(num_examples, 1, -1)[:, :, context_idx]
context_pixels = context_pixels.expand(num_examples, 3, -1)
background[:, :, context_idx] = context_pixels
comparison = torch.cat([background.view(-1, 3, 28, 28), recons])
save_image(comparison.cpu(), 'result/ep_' + str(epoch) + '_cps_' + str(N) + '.png',
nrow=num_examples)
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
for epoch in range(10):
train(epoch)
test(epoch)