-
Notifications
You must be signed in to change notification settings - Fork 1
/
turbulence_model.py
30 lines (22 loc) · 1.26 KB
/
turbulence_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# turbulence_model.py
import numpy as np
class TurbulenceModel:
def __init__(self, Cs):
# Initialize the turbulence model with the Smagorinsky constant (Cs)
self.Cs = Cs
def initialize(self, grid_size, time_step):
# Initialize turbulence model parameters (if any) based on grid_size and time_step
pass
def compute_turbulent_viscosity(self, velocity, density, turbulent_viscosity):
# Implement turbulence model to calculate turbulent viscosity
# Compute the local strain rate (e.g., magnitude of the velocity gradient tensor)
grad_u = np.gradient(velocity, axis=(1, 2))
strain_rate = np.sqrt(2 * np.sum(grad_u**2, axis=-1))
# Compute the grid-filtered velocity gradient tensor
du_dx = np.gradient(velocity[:, :, 0], axis=1)
du_dy = np.gradient(velocity[:, :, 1], axis=0)
S = np.array([[du_dx, du_dy], [du_dy, -du_dx]]) # Strain rate tensor
# Compute the subgrid-scale (SGS) viscosity using Smagorinsky-Lilly model
SGS_viscosity = (self.Cs * grid_size * strain_rate) ** 2
# Apply the SGS viscosity to the turbulent viscosity field
turbulent_viscosity[:, :] = np.maximum(turbulent_viscosity[:, :], SGS_viscosity)