-
Notifications
You must be signed in to change notification settings - Fork 195
/
Copy pathattack_vmp.py
executable file
·244 lines (192 loc) · 8.5 KB
/
attack_vmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python
## -*- coding: utf-8 -*-
##
## Working with Triton from commit 05b05cfbe8697a4a93d6ba674062f97465270412
##
import argparse
import sys
from triton import *
V_JMP = list()
def sync_reg(ctx, regs):
mapping = {
ctx.registers.rax : regs[0],
ctx.registers.rbx : regs[1],
ctx.registers.rcx : regs[2],
ctx.registers.rdx : regs[3],
ctx.registers.rdi : regs[4],
ctx.registers.rsi : regs[5],
ctx.registers.rbp : regs[6],
ctx.registers.rsp : regs[7],
ctx.registers.r8 : regs[8],
ctx.registers.r9 : regs[9],
ctx.registers.r10 : regs[10],
ctx.registers.r11 : regs[11],
ctx.registers.r12 : regs[12],
ctx.registers.r13 : regs[13],
ctx.registers.r14 : regs[14],
ctx.registers.r15 : regs[15],
}
for tt_reg, pin_value in mapping.items():
tt_value = ctx.getConcreteRegisterValue(tt_reg)
if tt_value != int(pin_value, 16):
ctx.setConcreteRegisterValue(tt_reg, int(pin_value, 16))
return
def sync_memory(ctx, args):
_, addr, size, data = args
memory = MemoryAccess(int(addr, 16), int(size))
synch = ctx.getConcreteMemoryValue(memory)
if synch != int(data, 16):
ctx.setConcreteMemoryValue(memory, int(data, 16))
return
def detecting_vjmp(execid, ctx, inst, vbraddr, vbrflag):
global V_JMP
ast = ctx.getAstContext()
if execid == 2 and vbraddr and vbrflag:
if inst.isSymbolized() and inst.getAddress() == vbraddr:
flag = ctx.getRegisterAst(ctx.getRegister(vbrflag))
if len(ast.search(flag, AST_NODE.VARIABLE)) == 2:
model, status, _ = ctx.getModel(flag == flag.evaluate(), status=True)
V_JMP.append(flag == flag.evaluate())
return
elif execid == 1:
# Virtual jmp marker 1
if inst.isSymbolized() and inst.getType() == OPCODE.X86.POPFQ:
cf = ctx.getRegisterAst(ctx.registers.cf)
if len(ast.search(cf, AST_NODE.VARIABLE)) == 2:
model, status, _ = ctx.getModel(cf != cf.evaluate(), status=True)
if status == SOLVER_STATE.SAT:
print(f'[+] A potential symbolic jump found on CF flag: {inst} - Model: {model}')
# Virtual jmp marker 2
if inst.isSymbolized() and inst.getType() == OPCODE.X86.CMP:
op1 = inst.getOperands()[0]
op2 = inst.getOperands()[1]
if op1.getType() == OPERAND.REG and op2.getType() == OPERAND.REG:
af = ctx.getRegisterAst(ctx.registers.af)
if len(ast.search(af, AST_NODE.VARIABLE)) == 2:
model, status, _ = ctx.getModel(af != af.evaluate(), status=True)
if status == SOLVER_STATE.SAT:
print(f'[+] A potential symbolic jump found of AF flag: {inst} - Model: {model}')
return
def update_sym_var(ctx):
ast = ctx.getAstContext()
# Get concrete value of registers
x_val = ctx.getConcreteRegisterValue(ctx.registers.rdi)
y_val = ctx.getConcreteRegisterValue(ctx.registers.rsi)
# Get symbolic variable
sym_x = ctx.getSymbolicVariable(0)
sym_y = ctx.getSymbolicVariable(1)
# Set concrete value to symbolic variables
ctx.setConcreteVariableValue(sym_x, x_val)
ctx.setConcreteVariableValue(sym_y, y_val)
# Create AST variables
x = ast.zx(64 - sym_x.getBitSize(), ast.variable(sym_x))
y = ast.zx(64 - sym_y.getBitSize(), ast.variable(sym_y))
# Assign ASTs to symbolic reigsters
ctx.assignSymbolicExpressionToRegister(ctx.newSymbolicExpression(x), ctx.registers.rdi)
ctx.assignSymbolicExpressionToRegister(ctx.newSymbolicExpression(y), ctx.registers.rsi)
return
def exec_instruction(execid, ctx, symsize, args, fuse, vbraddr, vbrflag):
_, addr, size, data = args
# This fuse is burned after the first instruction
if fuse:
print('[+] Symbolize inputs')
map_size = {
1: (ctx.registers.dil, ctx.registers.sil),
2: (ctx.registers.di, ctx.registers.si),
4: (ctx.registers.edi, ctx.registers.esi),
8: (ctx.registers.rdi, ctx.registers.rsi),
}
vars = ctx.getSymbolicVariables()
# If symbolic variables do not exist, create them
if len(vars) == 0:
ctx.symbolizeRegister(map_size[symsize][0], 'x')
ctx.symbolizeRegister(map_size[symsize][1], 'y')
else:
# If symbolic variables already exist, assign them to registers
update_sym_var(ctx)
inst = Instruction(int(addr, 16), bytes.fromhex(data))
ctx.processing(inst)
detecting_vjmp(execid, ctx, inst, vbraddr, vbrflag)
return False
def emulate(execid, ctx, symsize, file, vbraddr, vbrflag):
count = 0
fuse = True
with open(file, 'r') as fd:
for line in fd:
args = line.split(':')
kind = args[0]
# Synch memory read
if kind == 'mr':
sync_memory(ctx, args)
# Synch registers
if kind == 'r':
sync_reg(ctx, args[1:])
# Execute instruction
if kind == 'i':
fuse = exec_instruction(execid, ctx, symsize, args, fuse, vbraddr, vbrflag)
count += 1
print(f'[+] Instruction executed: {count}')
return
def setMode(ctx):
# Define optimizations
ctx.setMode(MODE.ALIGNED_MEMORY, True)
ctx.setMode(MODE.AST_OPTIMIZATIONS, True)
ctx.setMode(MODE.CONSTANT_FOLDING, True)
return
def one_path(execid, ctx, trace, symsize, vbraddr, vbrflag):
print('[+] Replaying the VMP trace')
emulate(execid, ctx, symsize, trace, vbraddr, vbrflag)
print('[+] Emulation done')
eax = ctx.getRegisterAst(ctx.registers.eax)
return eax
def result(ctx, ret_expr):
ast = ctx.getAstContext()
unro = ast.unroll(ret_expr)
synth = ctx.synthesize(ret_expr)
ppast1 = (str(unro) if len(str(unro)) < 100 else 'In: %s ...' %(str(unro)[0:100]))
ppast2 = (str(synth) if len(str(synth)) < 100 else 'In: %s ...' %(str(unro)[0:100]))
print(f'[+] Return value: {hex(ret_expr.evaluate())}')
print(f'[+] Devirt expr: {ppast1}')
print(f'[+] Synth expr: {ppast2}\n')
print(f'[+] LLVM IR ==============================\n')
print(ctx.liftToLLVM(synth if synth else ret_expr))
print(f'[+] EOF LLVM IR ============================== ')
return 0
def analysis(argv):
ctx = TritonContext(ARCH.X86_64)
setMode(ctx)
ret_expr1 = one_path(1, ctx, argv.trace1, argv.symsize, argv.vbraddr, argv.vbrflag)
if argv.trace2:
print(f'[+] A second trace has been provided')
ret_expr2 = one_path(2, ctx, argv.trace2, argv.symsize, argv.vbraddr, argv.vbrflag)
ast = ctx.getAstContext()
print(f'[+] Merging expressions from trace1 and trace2')
e1 = V_JMP[0]
ret_expr2 = ast.ite(e1, ret_expr2, ret_expr1)
result(ctx, ret_expr2)
else:
result(ctx, ret_expr1)
return 0
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("--trace1", type=str, metavar="<trace1>", help="Specify the VMP trace1")
parser.add_argument("--trace2", type=str, metavar="<trace2>", help="Specify the VMP trace2. The second trace is used if you want merging paths")
parser.add_argument("--symsize", type=int, metavar="<symsize>", help="Specify the size of symbolic variables")
parser.add_argument("--vbraddr", type=lambda x: int(x,0), metavar="<vbraddr>", help="Virtual branch address")
parser.add_argument("--vbrflag", type=str, metavar="<vbrflag>", help="Virtual branch flag")
argv = parser.parse_args(sys.argv[1:])
if argv.trace1 is None:
print('[-] You must define a VMP trace')
print('[!] Syntax: %s --trace1 <vmp trace> --symsize <sym size>' %(sys.argv[0]))
return -1
if argv.symsize not in [1, 2, 4, 8]:
print('[-] Size of symbolic variables must be equal to: 1, 2, 4, or 8 bytes')
print('[!] Syntax: %s --trace1 <vmp trace> --symsize <sym size>' %(sys.argv[0]))
return -1
if argv.trace2 is not None and argv.vbrflag is None:
print('[-] If you define a second trace, you have to define the virtual branch flag (e.g: cf, af, zf etc.')
print('[!] Syntax: %s --trace1 <vmp trace> --trace2 <vmp trace> --symsize <sym size> --vbraddr <vbraddr> --vbrflag <vbrflag>' %(sys.argv[0]))
return -1
return analysis(argv)
if __name__ == '__main__':
sys.exit(main())