forked from motrom/fastmurty
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_simplest.py
82 lines (71 loc) · 3.39 KB
/
example_simplest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# -*- coding: utf-8 -*-
"""
Michael Motro github.com/motrom/fastmurty last modified 5/17/19
Runs single-input K-best associations algorithm on a simple matrix.
Intended to demonstrate usage.
"""
import numpy as np
from otherimplementations.slowmurty import mhtda as mhtdaSlow
from mhtdaClink import sparse, mhtda, allocateWorkvarsforDA
from mhtdaClink import sparsifyByRow as sparsify
cost_matrix = np.array([[-10, -9, -1],
[ -1, -6, 3],
[ -9, -5, -6]], dtype=np.float64)
nrows, ncolumns = cost_matrix.shape
nsolutions = 6 # find the 5 lowest-cost associations
# sparse cost matrices only include a certain number of elements
# the rest are implicitly infinity
# in this case, the sparse matrix includes all elements (3 columns per row)
cost_matrix_sparse = sparsify(cost_matrix, 3)
# The sparse and dense versions are compiled differently (see the Makefile).
# The variable "sparse" in mhtdaClink needs to match the version compiled
cost_matrix_to_use = cost_matrix_sparse if sparse else cost_matrix
# mhtda is set up to potentially take multiple input hypotheses for both rows and columns
# input hypotheses specify a subset of rows or columns.
# In this case, we just want to use the whole matrix.
row_priors = np.ones((1, nrows), dtype=np.bool8)
col_priors = np.ones((1, ncolumns), dtype=np.bool8)
# Each hypothesis has a relative weight too.
# These values don't matter if there is only one hypothesis...
row_prior_weights = np.zeros(1)
col_prior_weights = np.zeros(1)
# The mhtda function modifies preallocated outputs rather than
# allocating new ones. This is slightly more efficient for repeated use
# within a tracker.
# The cost of each returned association:
out_costs = np.zeros(nsolutions)
# The row-column pairs in each association:
# Generally there will be less than nrows+ncolumns pairs in an association.
# The unused pairs are currently set to (-2, -2)
out_associations = np.zeros((nsolutions, nrows+ncolumns, 2), dtype=np.int32)
# variables needed within the algorithm (a C function sets this up):
workvars = allocateWorkvarsforDA(nrows, ncolumns, nsolutions)
# run!
mhtda(cost_matrix_to_use,
row_priors, row_prior_weights, col_priors, col_prior_weights,
out_associations, out_costs, workvars)
# print each association
for solution in range(nsolutions):
print("solution {:d}, cost {:.0f}".format(solution, out_costs[solution]))
# display row-column matches, not row misses or column misses
association = out_associations[solution]
association_matches = association[(association[:,0]>=0) & (association[:,1]>=0)]
mask = np.zeros((nrows, ncolumns), dtype=np.bool8)
mask[association_matches[:,0], association_matches[:,1]] = True
matrixstr = []
for row in range(nrows):
rowstr = []
for column in range(ncolumns):
elestr = ('{:3.0f}'.format(cost_matrix[row,column])
if mask[row,column] else ' * ')
rowstr.append(elestr)
matrixstr.append(' '.join(rowstr))
print('\n'.join(matrixstr))
# compare to the simple(ish) Python implementation in slowmurty.py.
# There are a bunch of equivalent solutions, so the associations might not be
# in the same order.
out_costs2 = out_costs.copy()
mhtdaSlow(cost_matrix,
row_priors, row_prior_weights, col_priors, col_prior_weights,
out_associations, out_costs2, workvars)
assert np.allclose(out_costs, out_costs2)