-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGP_model.py
275 lines (249 loc) · 11.8 KB
/
GP_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import GPy
from GPyOpt.util.general import get_quantiles
import GPyOpt
import numpy as np
from math import pow, log, sqrt
import pandas as pd
# train_x : history x
# train_y : history y
# num_init : The number of initial sample points
# lsx : the collected x in last round
# lsy : the text function value corresponding to the collected x in last round
# P : Represents the historical confidence level of the acquisition functions in acquisition library
# domain : refer to the information of the variable of BayesianOptimization called by GPyOpt
# f : refer to the optimization objectives information of BayesianOptimization called by GPyOpt
# num_obj : The selected number of acquisition functions that build up multi-objective optimization.
# eta is a hyperparameters
class GP:
def __init__(self, iter, train_x, train_y, exx, exy, k, num_init, lsx, lsy, P, f,
domain, model, eta=0.9):
self.train_x = train_x.copy()
self.train_y = train_y.copy()
self.mean = np.mean(exy)
self.std = np.std(exy)
self.num_train = exx.shape[0]
self.lsx = lsx.copy()
self.lsy = lsy.copy()
self.exx = exx.copy()
self.exy = exy.copy()
self.dim = self.exx.shape[1]
self.k = k
self.num_init = num_init
self.P = P
self.eta = eta
self.domain = domain
self.f = f
self.iter = iter
self.m = model
self.tau = np.min(train_y)
self.burnin = 200
self.n_samples = 10
self.subsample_interval = 10
self.sample()
self.update()
self.mean = np.mean(train_y)
self.std = np.std(train_y)
self.train_y = (train_y.copy() - self.mean) / self.std
self.num_train = train_x.shape[0]
kern = GPy.kern.Matern52(input_dim=self.dim, ARD=True)
self.m = GPy.models.GPRegression(self.train_x, self.train_y, kern, noise_var=0)
def update(self):
tx = self.train_x.tolist()
ty = self.train_y.ravel().tolist()
lsy = self.lsy.ravel().tolist()
self.lsbesty = np.min(self.exy)
history_data = pd.DataFrame({'x': tx, 'y': ty})
history_data.sort_values(by='y', ascending=True, inplace=True)
history_data.reset_index(drop=True, inplace=True)
self.rank = []
self.hq_x = []
self.phi_alpha = []
alpha = 3
for i in lsy:
if len(history_data.index[history_data['y'] < i]) > 0:
self.rank.append(history_data.index[history_data['y'] < i][-1] + 1)
else:
self.rank.append(0)
if self.rank[-1] <= int(alpha):
self.hq_x.append(1)
else:
self.hq_x.append(0)
self.phii = self.hq_x
self.rank = np.array(self.rank)
self.hq_x = np.array(self.hq_x)
# Stores information about the collection library
self.acqusition_type = ['MPI', 'EI', 'LCB', 'LCB', 'LCB', 'LCB', 'LCB']
self.hyperpara = [0.001, 0.001, [0.5, 0.5], [0.5, 0.05], [5, 0.1], [10, 0.1], [30, 0.1]]
# LP_recommend_num is the regarding threshold of recommended number when using LP-alpha(x) acquisition functions
# beta is equal to 0.5
LP_recommend_num = int(0.5 * self.k) # k / 2
current_P = []
for i in range(len(self.acqusition_type)):
if self.acqusition_type[i] == 'LCB':
self.set_kappa(self.hyperpara[i][0], self.hyperpara[i][1])
LP_checker = GPyOpt.methods.BayesianOptimization(f=self.f,
domain=self.domain,
acquisition_type=self.acqusition_type[i],
normalize_Y=True,
X=self.exx,
Y=self.exy,
evaluator_type='local_penalization',
batch_size=LP_recommend_num,
acquisition_weight=self.kappa)
else:
LP_checker = GPyOpt.methods.BayesianOptimization(f=self.f,
domain=self.domain,
acquisition_type=self.acqusition_type[i],
normalize_Y=True,
X=self.exx,
Y=self.exy,
evaluator_type='local_penalization',
batch_size=LP_recommend_num,
acquisition_jitter=self.hyperpara[i])
LP_checker.run_optimization(max_iter=1)
LP_acq_x = LP_checker.suggested_sample
# acq_recommend_bound is the threshold at which the acquisition function recommends the sample points or not
acq_recommend_bound = np.inf
for x in LP_acq_x:
pys, pss = self.predict(x)
if self.acqusition_type[i] == 'LCB':
acq_calc = -self.LCB(pys, pss)
elif self.acqusition_type[i] == 'MPI':
acq_calc = self.PI(pys, pss, self.hyperpara[i])
else:
acq_calc = self.EI(pys, pss, self.hyperpara[i])
if acq_calc < acq_recommend_bound:
acq_recommend_bound = acq_calc
# acq_val is the value of the acquisition function
# under the current acquisition function of the previous round of sampling points
acq_val = []
phi_alpha = []
for x in self.lsx:
pys, pss = self.predict(x)
if self.acqusition_type[i] == 'LCB':
acq_calc = -self.LCB(pys, pss)
elif self.acqusition_type[i] == 'MPI':
acq_calc = self.PI(pys, pss, self.hyperpara[i])
else:
acq_calc = self.EI(pys, pss, self.hyperpara[i])
acq_val.append(acq_calc)
if acq_calc >= acq_recommend_bound - 1e-7:
phi_alpha.append(1)
else:
phi_alpha.append(0)
phi_alpha = np.array(phi_alpha)
self.phi_alpha.append(phi_alpha.tolist())
# cp is used to calculate the penalty value of current acquisition function
cp = 0
for i in range(self.lsx.shape[0]):
cp += abs(self.hq_x[i] - phi_alpha[i]) * abs(self.lsbesty - lsy[i])
if self.hq_x[i] == 1 and phi_alpha[i] == 1:
cp += lsy[i] - self.lsbesty
current_P.append(cp)
current_P = np.array(current_P)
# self.CP is a comprehensive information that synthesizes the historical penalty value of acquisition functions
# and the penalty value obtained by the previous round of sampling points,
# and needs to be stored by calling the main function
self.CP = self.eta * self.P + current_P
df_CP = pd.DataFrame({'cp': self.CP.tolist()})
# self.current_choice stores the subscripts of the num_obj acquisition functions selected in the acquisition
# function library.
# self.confidence returns the confidence level obtained by recombining the penalty value of the selected
# acquisition functions in the current round, which is a one-dimensional ndarray
# num_obj : The number of selected acquisition functions that build up multi-objective optimization
# num_obj is equal to 3
self.current_choice = df_CP.index[df_CP['cp'].rank(method='first') - 3 < 1e-3].tolist()
self.T = []
minn = np.min(self.CP)
for i in self.current_choice:
self.T.append(self.CP[i])
self.T = np.array(self.T)
self.T = (self.T + 1e-4) / np.sum((self.T + 1e-4))
def sample(self):
self.m.optimize_restarts(num_restarts=10)
if not 0:
self.s = np.array(np.array(self.m[:]))
self.s = self.s.reshape(1, self.s.size)
self.ms = np.array([self.m])
else:
hmc = GPy.inference.mcmc.HMC(self.m, stepsize=5e-2)
s = hmc.sample(num_samples=self.n_samples * self.subsample_interval)
self.s = s[0::self.subsample_interval]
self.ms = []
for i in range(self.s.shape[0]):
samp_kern = GPy.kern.Matern52(input_dim=self.dim, ARD=True)
samp_m = GPy.models.GPRegression(self.train_x, self.train_y, samp_kern)
samp_m[:] = self.s[i]
samp_m.parameters_changed()
self.ms = np.append(self.ms, samp_m)
def predict_sample(self, x, hyp_vec):
self.m.kern.variance = hyp_vec[0]
self.m.kern.lengthscale = hyp_vec[1:1 + self.dim]
self.m.likelihood.variance = hyp_vec[1 + self.dim]
py, ps2 = self.m.predict(x.reshape(1, x.size))
py = self.mean + (py * self.std)
ps2 = ps2 * (self.std ** 2)
return py, ps2
def set_kappa(self, upsilon, delta):
num_train = self.num_train
t = 1 + max(int((num_train - self.num_init) / self.k), 0)
self.kappa = sqrt(
upsilon * 2 * log(pow(t, 2.0 + self.dim / 2.0) * 3 * pow(np.pi, 2) / (3 * delta))) # kappa of LCB
def predict(self, x):
num_samples = self.s.shape[0]
pys = np.zeros((num_samples, 1))
pss = np.zeros((num_samples, 1))
for i in range(num_samples):
m, v = self.ms[i].predict(x.reshape(1, x.size))
pys[i] = m[0][0]
pss[i] = v[0][0]
pys = self.mean + (pys * self.std)
pss = pss * (self.std ** 2)
return pys, np.sqrt(pss)
def LCB(self, pys, pss):
num_samples = pys.shape[0]
acq = 0
for i in range(num_samples):
y = pys[i]
s = pss[i]
lcb = y - self.kappa * s
acq += lcb
acq /= self.s.shape[0]
return acq
def EI(self, pys, pss, eps):
num_samples = pys.shape[0]
acq = 0
for i in range(num_samples):
y = pys[i]
s = pss[i]
phi, Phi, u = get_quantiles(eps, self.tau, y, s)
f_acqu = s * (u * Phi + phi)
acq += f_acqu
acq /= self.s.shape[0]
return acq
def PI(self, pys, pss, eps):
num_samples = pys.shape[0]
acq = 0
for i in range(num_samples):
y = pys[i]
s = pss[i]
_, Phi, _ = get_quantiles(eps, self.tau, y, s)
f_acqu = Phi
acq += f_acqu
acq /= self.s.shape[0]
return acq
def MACE_acq(self, x):
pys, pss = self.predict(x)
list = []
for i in self.current_choice:
if self.acqusition_type[i] == 'LCB':
self.set_kappa(self.hyperpara[i][0], self.hyperpara[i][1])
lcb = self.LCB(pys, pss)
list.append([lcb, 0])
elif self.acqusition_type[i] == 'MPI':
pi = self.PI(pys, pss, self.hyperpara[i])
list.append([pi, 1])
else:
ei = self.EI(pys, pss, self.hyperpara[i])
list.append([ei, 1])
return list