-
Notifications
You must be signed in to change notification settings - Fork 7
/
baseline.py
executable file
·490 lines (410 loc) · 19.2 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# ========== Thanks https://github.com/Eric-mingjie/rethinking-network-pruning ============
# ========== we adopt the code from the above link and did modifications ============
# ========== the comments as #=== === were added by us, while the comments as # were the original one ============
from __future__ import print_function
import argparse
import os
import random
import shutil
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import models as models
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch CIFAR10/CIFAR100/TinyImagenet Training')
# Datasets
parser.add_argument('-d', '--dataset', default='cifar10', type=str)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Optimization options
parser.add_argument('--epochs', default=160, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--train-batch', default=64, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--test-batch', default=50, type=int, metavar='N',
help='test batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--drop', '--dropout', default=0, type=float,
metavar='Dropout', help='Dropout ratio')
parser.add_argument('--schedule', type=int, nargs='+', default=[80, 120],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
# Checkpoints
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Architecture
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet20',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('--depth', type=int, default=29, help='Model depth.')
# Miscs
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--save_dir', default='results/', type=str)
#Device options
parser.add_argument('--gpu-id', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
# ========== Sanity Check: randLabel & shufflePixel on CIFAR-10 ============
# ========== --randLabel will make the ============
# ========== To reproduce the experiment in our paper, you just need to specify --shufflePixel 1 ============
# ========== See code between line 111-167 ============
parser.add_argument('--randLabel',type=int, default=0,help = 'Using randLabel Dataset for LT training')
parser.add_argument('--shufflePixel',type=int, default=0,help = 'Using shufflePixel AND RANDLABEL Dataset for LT training')
# ========== Ablation Study: Half Dataset on CIFAR-10 ============
# ========== can specify the --max_batch_idx argument to nonzero. If so, the SHUFFLE attribute of the trainloader ============
# ========== will be CLOSED and the training procedure will only use the 0~max_batch_idx-th-batch-traindata ============
# ========== in our experiments we set this number to 390 (since totally exists 50,000/64 ~ 781 full mini-batches) ============
parser.add_argument('--max_batch_idx',type = int, default = 0,help = 'Control the training data size')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Validate dataset
assert args.dataset == 'cifar10' or args.dataset == 'cifar100' or args.dataset == 'tinyimagenet', 'Dataset can only be cifar10 or cifar100 or tinyimagenet.'
gpu_id = args.gpu_id
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
best_acc = 0 # best test accuracy
import numpy as np
class CIFAR10RandomLabels(datasets.CIFAR10):
"""CIFAR10 dataset, with support for randomly corrupt labels.
Params
------
corrupt_prob: float
Default 1.0. The probability of a label being replaced with
random label.
num_classes: int
Default 10. The number of classes in the dataset.
"""
def __init__(self, corrupt_prob=1.0, num_classes=10, **kwargs):
super(CIFAR10RandomLabels, self).__init__(**kwargs)
self.n_classes = num_classes
if corrupt_prob > 0:
self.corrupt_labels(corrupt_prob)
def corrupt_labels(self, corrupt_prob):
# ========== Random Label Operation ============
labels = np.array(self.targets)
np.random.seed(12345)
mask = np.random.rand(len(labels)) <= corrupt_prob
rnd_labels = np.random.choice(self.n_classes, mask.sum())
labels[mask] = rnd_labels
# we need to explicitly cast the labels from npy.int64 to
# builtin int type, otherwise pytorch will fail...
targets = [int(x) for x in labels]
self.targets = targets
# ========== Random (Shuffle) Pixel Operation ============
if args.shufflePixel != 0:
print('********************* DEBUG PRINT : ADDITION : SHUFFLE PIXEL ************************')
xs = torch.tensor(self.data)
Size = xs.size()
# e.g. for CIFAR10, is 50000 * 32 * 32 * 3
xs = xs.reshape(Size[0],-1)
for i in range(Size[0]):
xs[i] = xs[i][torch.randperm(xs[i].nelement())]
xs = xs.reshape(Size)
xs = xs.numpy()
self.data = xs
class CIFAR100RandomLabels(datasets.CIFAR100):
"""CIFAR100 dataset, with support for randomly corrupt labels.
Params
------
corrupt_prob: float
Default 1.0. The probability of a label being replaced with
random label.
num_classes: int
Default 100. The number of classes in the dataset.
"""
def __init__(self, corrupt_prob=1.0, num_classes=100, **kwargs):
super(CIFAR100RandomLabels, self).__init__(**kwargs)
self.n_classes = num_classes
if corrupt_prob > 0:
self.corrupt_labels(corrupt_prob)
def corrupt_labels(self, corrupt_prob):
labels = np.array(self.targets)
np.random.seed(12345)
mask = np.random.rand(len(labels)) <= corrupt_prob
rnd_labels = np.random.choice(self.n_classes, mask.sum())
labels[mask] = rnd_labels
# we need to explicitly cast the labels from npy.int64 to
# builtin int type, otherwise pytorch will fail...
targets = [int(x) for x in labels]
self.targets = targets
if args.shufflePixel != 0:
print('********************* DEBUG PRINT : ADDITION : SHUFFLE PIXEL ************************')
xs = torch.tensor(self.data)
Size = xs.size()
# e.g. for CIFAR100, is 50000 * 32 * 32 * 3
xs = xs.reshape(Size[0],-1)
for i in range(Size[0]):
xs[i] = xs[i][torch.randperm(xs[i].nelement())]
xs = xs.reshape(Size)
xs = xs.numpy()
self.data = xs
def main():
global best_acc
start_epoch = args.start_epoch # start from epoch 0 or last checkpoint epoch
os.makedirs(args.save_dir, exist_ok=True)
# Data
# ========== The following preprocessing procedure is adopted from https://github.com/alecwangcq/GraSP ============
print('==> Preparing dataset %s' % args.dataset)
if args.dataset == 'cifar10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
dataloader = datasets.CIFAR10
num_classes = 10
elif args.dataset == 'cifar100':
dataloader = datasets.CIFAR100
num_classes = 100
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
elif args.dataset == 'tinyimagenet':
args.schedule = [150,225]
num_classes = 200
tiny_mean = [0.48024578664982126, 0.44807218089384643, 0.3975477478649648]
tiny_std = [0.2769864069088257, 0.26906448510256, 0.282081906210584]
transform_train = transforms.Compose([
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(tiny_mean, tiny_std)])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(tiny_mean, tiny_std)])
args.workers = 16
args.epochs = 300
if args.randLabel != 0 or args.shufflePixel != 0:
assert args.dataset == 'cifar10' or args.dataset == 'cifar100','randLabel/shufflePixel can only be used together with cifar10/100.'
print('###################### DEBUG PRINT : USING RANDLABEL TRAINING ####################')
if args.dataset == 'cifar10':
trainset = CIFAR10RandomLabels(root='./data', train=True, download=True, transform=transform_train)
else:
trainset = CIFAR100RandomLabels(root='./data', train=True, download=True, transform=transform_train)
elif args.dataset != 'tinyimagenet':
trainset = dataloader(root='./data', train=True, download=True, transform=transform_train)
else:
trainset = datasets.ImageFolder('./data' + '/tiny_imagenet/train', transform=transform_train)
if args.max_batch_idx == 0:
trainloader = data.DataLoader(trainset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers)
else:
trainloader = data.DataLoader(trainset, batch_size=args.train_batch, shuffle=False, num_workers=args.workers)
if args.dataset != 'tinyimagenet':
testset = dataloader(root='./data', train=False, download=False, transform=transform_test)
testloader = data.DataLoader(testset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
else:
testset = datasets.ImageFolder('./data' + '/tiny_imagenet/val', transform=transform_test)
testloader = data.DataLoader(testset, batch_size=args.test_batch, shuffle=False,
num_workers=args.workers)
# Model
print("==> creating model '{}'".format(args.arch))
if args.arch.endswith('resnet'):
model = models.__dict__[args.arch](
num_classes=num_classes,
depth=args.depth,
)
else:
model = models.__dict__[args.arch](num_classes=num_classes)
model.cuda()
cudnn.benchmark = True
print(' Total Conv and Linear Params: %.2fM' % (sum(p.weight.data.numel() for p in model.modules() if isinstance(p,nn.Linear) or isinstance(p,nn.Conv2d))/1000000.0))
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# Resume
if args.dataset == 'cifar10':
title = 'cifar-10-' + args.arch
elif args.dataset == 'cifar100':
title = 'cifar-100-' + args.arch
else:
title = 'tinyimagenet' + args.arch
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
args.save_dir = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.save_dir, 'log.txt'), title=title, resume=True)
else:
logger = Logger(os.path.join(args.save_dir, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
if args.evaluate:
print('\nEvaluation only')
test_loss, test_acc = test(testloader, model, criterion, start_epoch, use_cuda)
print(' Test Loss: %.8f, Test Acc: %.2f' % (test_loss, test_acc))
return
save_checkpoint({'state_dict': model.state_dict()}, False, checkpoint=args.save_dir, filename='init.pth.tar')
MAX_BATCH_IDX = args.max_batch_idx
# Train and val
for epoch in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr']))
train_loss, train_acc = train(trainloader, model, criterion, optimizer, epoch, use_cuda)
if MAX_BATCH_IDX == 0:
test_loss, test_acc = test(testloader, model, criterion, epoch, use_cuda)
else:
test_loss = 0
test_acc = 0
# append logger file
logger.append([state['lr'], train_loss, test_loss, train_acc, test_acc])
# save model
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint=args.save_dir)
logger.close()
print('Best acc:')
print(best_acc)
def train(trainloader, model, criterion, optimizer, epoch, use_cuda):
# switch to train mode
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(trainloader))
print(args)
MAX_BATCH_IDX = args.max_batch_idx
for batch_idx, (inputs, targets) in enumerate(trainloader):
# measure data loading time
data_time.update(time.time() - end)
if MAX_BATCH_IDX != 0:
if batch_idx == MAX_BATCH_IDX:
bar.finish()
return (losses.avg, top1.avg)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(trainloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def test(testloader, model, criterion, epoch, use_cuda):
global best_acc
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar('Processing', max=len(testloader))
for batch_idx, (inputs, targets) in enumerate(testloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.data.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(testloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def save_checkpoint(state, is_best, checkpoint, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch):
global state
if epoch in args.schedule:
state['lr'] *= args.gamma
for param_group in optimizer.param_groups:
param_group['lr'] = state['lr']
if __name__ == '__main__':
main()