-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathLT_prune.py
executable file
·299 lines (251 loc) · 11.7 KB
/
LT_prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# ========== Thanks https://github.com/Eric-mingjie/rethinking-network-pruning ============
# ========== we adopt the code from the above link and did modifications ============
# ========== the comments as #=== === were added by us, while the comments as # were the original one ============
from __future__ import print_function
import argparse
import os
import shutil
import time
import random
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import models as models
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch LT Pruning')
# Datasets
parser.add_argument('-d', '--dataset', default='cifar10', type=str)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Optimization options
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--train-batch', default=64, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--test-batch', default=100, type=int, metavar='N',
help='test batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--drop', '--dropout', default=0, type=float,
metavar='Dropout', help='Dropout ratio')
parser.add_argument('--schedule', type=int, nargs='+', default=[150, 225],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
# Checkpoints
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Architecture
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet20',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('--depth', type=int, default=29, help='Model depth.')
# Miscs
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--save_dir', default='test_checkpoint/', type=str)
#Device options
parser.add_argument('--gpu-id', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--prune_ratio', default=0.98, type=float)
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Validate dataset
assert args.dataset == 'cifar10' or args.dataset == 'cifar100', 'Dataset can only be cifar10 or cifar100.'
gpu_id = args.gpu_id
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
best_acc = 0 # best test accuracy
def main():
global best_acc
start_epoch = args.start_epoch # start from epoch 0 or last checkpoint epoch
os.makedirs(args.save_dir, exist_ok=True)
# Data
print('==> Preparing dataset %s' % args.dataset)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.dataset == 'cifar10':
dataloader = datasets.CIFAR10
num_classes = 10
else:
dataloader = datasets.CIFAR100
num_classes = 100
trainset = dataloader(root='./data', train=True, download=True, transform=transform_train)
trainloader = data.DataLoader(trainset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers)
testset = dataloader(root='./data', train=False, download=False, transform=transform_test)
testloader = data.DataLoader(testset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
# Model
print("==> creating model '{}'".format(args.arch))
if args.arch.endswith('resnet'):
model = models.__dict__[args.arch](
num_classes=num_classes,
depth=args.depth,
)
else:
model = models.__dict__[args.arch](num_classes=num_classes)
model.cuda()
cudnn.benchmark = True
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# Resume
title = 'cifar-10-' + args.arch
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
else:
logger = Logger(os.path.join(args.save_dir, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
print('\nEvaluation only')
test_loss0, test_acc0 = test(testloader, model, criterion, start_epoch, use_cuda)
print('Before pruning: Test Loss: %.8f, Test Acc: %.2f' % (test_loss0, test_acc0))
# -------------------------------------------------------------
#pruning
total = 0
total_nonzero = 0
linear = 0
linear_nonzero = 0
total_conv = 0
for m in model.modules():
# ========== when calculating the total number of parameters, we count into the linear layer ============
if isinstance(m, nn.Conv2d) or isinstance(m,nn.Linear):
if isinstance(m,nn.Conv2d):
total_conv += m.weight.data.numel()
total += m.weight.data.numel()
mask = m.weight.data.abs().clone().gt(0).float().cuda()
total_nonzero += torch.sum(mask)
else:
total += m.weight.data.numel()
mask = m.weight.data.abs().clone().gt(0).float().cuda()
total_nonzero += torch.sum(mask)
conv_weights = torch.zeros(total_conv)
index = 0
for m in model.modules():
if isinstance(m, nn.Conv2d):
size = m.weight.data.numel()
conv_weights[index:(index+size)] = m.weight.data.view(-1).abs().clone()
index += size
# ========== while applying the LT magnitude-based pruning, we only prune the weights of conv layers ============
# ========== and make the global remained ratio = 1 - p = 1 - --prune_ratio ============
y, i = torch.sort(conv_weights)
thre_index = total - total_nonzero + int(total_nonzero * args.prune_ratio)
thre = y[int(thre_index)]
pruned = 0
print('Pruning threshold: {}'.format(thre))
zero_flag = False
CNT = 0
for k, m in enumerate(model.modules()):
if isinstance(m, nn.Conv2d) or isinstance(m,nn.Linear):
CNT = CNT + 1
weight_copy = m.weight.data.abs().clone()
mask = weight_copy.gt(thre).float().cuda()
if isinstance(m,nn.Linear):
TYPE = 'Linear'
mask = weight_copy.gt(0).float().cuda()
else:
TYPE = 'Conv'
pruned = pruned + mask.numel() - torch.sum(mask)
m.weight.data.mul_(mask)
if int(torch.sum(mask)) == 0:
zero_flag = True
print('layer index: {:d} ({:s}) \t total params: {:d} \t remaining params: {:d} \t remained ratio: {:2f}'.
format(CNT, TYPE, mask.numel(), int(torch.sum(mask)), (torch.sum(mask)/mask.numel()).float()))
print('Total params: {}, Pruned params: {}, Pruned ratio: {}'.format(total, pruned, pruned/total))
# -------------------------------------------------------------
print('\nTesting')
test_loss1, test_acc1 = test(testloader, model, criterion, start_epoch, use_cuda)
print('After Pruning: Test Loss: %.8f, Test Acc: %.2f' % (test_loss1, test_acc1))
save_checkpoint({
'epoch': 0,
'state_dict': model.state_dict(),
'acc': test_acc1,
'best_acc': 0.,
}, False, checkpoint=args.save_dir)
with open(os.path.join(args.save_dir, 'prune.txt'), 'w') as f:
f.write('Before pruning: Test Loss: %.8f, Test Acc: %.2f\n' % (test_loss0, test_acc0))
f.write('Total params: {}, Pruned params: {}, Pruned ratio: {}\n'.format(total, pruned, pruned/total))
f.write('After Pruning: Test Loss: %.8f, Test Acc: %.2f\n' % (test_loss1, test_acc1))
if zero_flag:
f.write("There exists a layer with 0 parameters left.")
return
def test(testloader, model, criterion, epoch, use_cuda):
global best_acc
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar('Processing', max=len(testloader))
for batch_idx, (inputs, targets) in enumerate(testloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.data.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(testloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def save_checkpoint(state, is_best, checkpoint, filename='pruned.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if __name__ == '__main__':
main()