-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCellChat_class.R
895 lines (838 loc) · 36 KB
/
CellChat_class.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
#' The CellChat Class
#'
#' The CellChat object is created from a single-cell transcriptomic data matrix, Seurat V3 or SingleCellExperiment object.
#' When inputting an data matrix, it takes a digital data matrices as input. Genes should be in rows and cells in columns. rownames and colnames should be included.
#' The class provides functions for data preprocessing, intercellular communication network inference, communication network analysis, and visualization.
#'
#'
#'# Class definitions
#' @importFrom methods setClassUnion
#' @importClassesFrom Matrix dgCMatrix
setClassUnion(name = 'AnyMatrix', members = c("matrix", "dgCMatrix"))
setClassUnion(name = 'AnyFactor', members = c("factor", "list"))
#' The key slots used in the CellChat object are described below.
#'
#' @slot data.raw raw count data matrix
#' @slot data normalized data matrix for CellChat analysis (Genes should be in rows and cells in columns)
#' @slot data.signaling a subset of normalized matrix only containing signaling genes
#' @slot data.scale scaled data matrix
#' @slot data.project projected data
#' @slot images a list of spatial image objects
#' @slot net a three-dimensional array P (K×K×N), where K is the number of cell groups and N is the number of ligand-receptor pairs. Each row of P indicates the communication probability originating from the sender cell group to other cell groups.
#' @slot netP a three-dimensional array representing cel-cell communication networks on a signaling pathway level
#' @slot DB ligand-receptor interaction database used in the analysis (a subset of CellChatDB)
#' @slot LR a list of information related with ligand-receptor pairs
#' @slot meta data frame storing the information associated with each cell
#' @slot idents a factor defining the cell identity used for all analysis. It becomes a list for a merged CellChat object
#' @slot var.features A list: one element is a vector consisting of the identified over-expressed signaling genes; one element is a data frame returned from the differential expression analysis
#' @slot dr List of the reduced 2D coordinates, one per method, e.g., umap/tsne/dm
#' @slot options List of miscellaneous data, such as parameters used throughout analysis, and a indicator whether the CellChat object is a single or merged
#'
#' @exportClass CellChat
#' @importFrom Rcpp evalCpp
#' @importFrom methods setClass
# #' @useDynLib CellChat
CellChat <- methods::setClass("CellChat",
slots = c(data.raw = 'AnyMatrix',
data = 'AnyMatrix',
data.signaling = "AnyMatrix",
data.scale = "matrix",
data.project = "AnyMatrix",
images = "list",
net = "list",
netP = "list",
meta = "data.frame",
idents = "AnyFactor",
DB = "list",
LR = "list",
var.features = "list",
dr = "list",
options = "list")
)
#' show method for CellChat
#'
#' @param CellChat object
#' @param show show the object
#' @param object object
#' @docType methods
#'
setMethod(f = "show", signature = "CellChat", definition = function(object) {
if (object@options$mode == "single") {
cat("An object of class", class(object), "created from a single dataset", "\n", nrow(object@data), "genes.\n", ncol(object@data), "cells. \n")
} else if (object@options$mode == "merged") {
cat("An object of class", class(object), "created from a merged object with multiple datasets", "\n", nrow([email protected]), "signaling genes.\n", ncol([email protected]), "cells. \n")
}
if (object@options$datatype == "RNA") {
cat("CellChat analysis of single cell RNA-seq data! \n")
} else {
cat("CellChat analysis of", object@options$datatype, "data! The input spatial locations are \n")
print(head(object@images$coordinates))
}
invisible(x = NULL)
})
#' Create a new CellChat object from a data matrix, Seurat or SingleCellExperiment object
#'
#' @param object a normalized (NOT count) data matrix (genes by cells), Seurat or SingleCellExperiment object
#' @param meta a data frame (rows are cells with rownames) consisting of cell information, which will be used for defining cell groups.
#' If input is a Seurat or SingleCellExperiment object, the meta data in the object will be used
#' @param group.by a char name of the variable in meta data, defining cell groups.
#' If input is a data matrix and group.by is NULL, the input `meta` should contain a column named 'labels',
#' If input is a Seurat or SingleCellExperiment object, USER must provide `group.by` to define the cell groups. e.g, group.by = "ident" for Seurat object
#' @param datatype By default datatype = "RNA"; when running CellChat on spatial imaging data, set datatype = "spatial" and input `scale.factors`
#'
#' @param coordinates a data matrix in which each row gives the spatial locations/coordinates of each cell/spot
#' @param scale.factors a list containing the scale factors and spot diameter for the full/high/low resolution images.
#'
#' USER must input this list when datatype = "spatial". scale.factors must contain an element named `spot.diameter`, which is the theoretical spot size; e.g., 10x Visium (spot.size = 65 microns), and another element named `spot`, which is the number of pixels that span the diameter of a theoretical spot size in the original, full-resolution image.
#'
#' For 10X visium, scale.factors are in the `scalefactors_json.json`. scale.factors$spot is the `spot.size.fullres `
#'
#' @param assay Assay to use when the input is a Seurat object. NB: The data in the `integrated` assay is not suitable for CellChat analysis because it contains negative values.
#' @param do.sparse whether use sparse format
#'
#' @return
#' @export
#' @importFrom methods as new
#' @examples
#' \dontrun{
#' Create a CellChat object from single-cell transcriptomics data
#' # Input is a data matrix
#' ## create a dataframe consisting of the cell labels
#' meta = data.frame(labels = cell.labels, row.names = names(cell.labels))
#' cellChat <- createCellChat(object = data.input, meta = meta, group.by = "labels")
#'
#' # input is a Seurat object
#' ## use the default cell identities of Seurat object
#' cellChat <- createCellChat(object = seurat.obj, group.by = "ident", assay = "RNA")
#' ## use other meta information as cell groups
#' cellChat <- createCellChat(object = seurat.obj, group.by = "seurat.clusters")
#'
#' # input is a SingleCellExperiment object
#' cellChat <- createCellChat(object = sce.obj, group.by = "sce.clusters")
#'
#' Create a CellChat object from spatial imaging data
#' # Input is a data matrix
#' cellChat <- createCellChat(object = data.input, meta = meta, group.by = "labels",
#' datatype = "spatial", coordinates = coordinates, scale.factors = scale.factors)
#'
#' # input is a Seurat object
#' cellChat <- createCellChat(object = seurat.obj, group.by = "ident", assay = "SCT",
#' datatype = "spatial", scale.factors = scale.factors)
#'
#' }
createCellChat <- function(object, meta = NULL, group.by = NULL,
datatype = c("RNA", "spatial"), coordinates = NULL, scale.factors = NULL,
assay = NULL, do.sparse = T) {
datatype <- match.arg(datatype)
# data matrix as input
if (inherits(x = object, what = c("matrix", "Matrix", "dgCMatrix"))) {
print("Create a CellChat object from a data matrix")
data <- object
if (is.null(group.by)) {
group.by <- "labels"
}
}
# Seurat object as input
if (is(object,"Seurat")) {
.error_if_no_Seurat()
print("Create a CellChat object from a Seurat object")
if (is.null(assay)) {
assay = DefaultAssay(object)
if (assay == "integrated") {
warning("The data in the `integrated` assay is not suitable for CellChat analysis! Please use the `RNA` or `SCT` assay! ")
}
cat(paste0("The `data` slot in the default assay is used. The default assay is ", assay),'\n')
}
data <- Seurat::GetAssayData(object, assay = assay, slot = "data") # normalized data matrix
if (min(data) < 0) {
stop("The data matrix contains negative values. Please ensure the normalized data matrix is used.")
}
if (is.null(meta)) {
cat("The `meta.data` slot in the Seurat object is used as cell meta information",'\n')
meta <- [email protected]
meta$ident <- Seurat::Idents(object)
}
if (is.null(group.by)) {
group.by <- "ident"
}
if (datatype %in% c("spatial")) {
if (is.null(coordinates)) {
coordinates <- GetTissueCoordinates(object, scale = NULL, cols = c("imagerow", "imagecol"))
# scale.factors <- object@images[["slice1"]]@scale.factors
}
}
}
# SingleCellExperiment object as input
if (is(object,"SingleCellExperiment")) {
print("Create a CellChat object from a SingleCellExperiment object")
if ("logcounts" %in% SummarizedExperiment::assayNames(object)) {
cat("The `logcounts` assay is used",'\n')
data <- SingleCellExperiment::logcounts(object)
} else {
stop("SingleCellExperiment object must contain an assay named `logcounts`")
}
if (is.null(meta)) {
cat("The `colData` assay in the SingleCellExperiment object is used as cell meta information",'\n')
meta <- as.data.frame(SingleCellExperiment::colData(object))
}
if (is.null(group.by)) {
stop("`group.by` should be defined!")
}
}
if (!inherits(x = data, what = c("dgCMatrix")) & do.sparse) {
data <- as(data, "dgCMatrix")
}
if (!is.null(meta)) {
if (inherits(x = meta, what = c("matrix", "Matrix"))) {
meta <- as.data.frame(x = meta)
}
if (!is.data.frame(meta)) {
stop("The input `meta` should be a data frame")
}
if (!identical(rownames(meta), colnames(data))) {
cat("The cell barcodes in 'meta' is ", head(rownames(meta)),'\n')
warning("The cell barcodes in 'meta' is different from those in the used data matrix.
We now simply assign the colnames in the data matrix to the rownames of 'mata'!")
rownames(meta) <- colnames(data)
}
} else {
meta <- data.frame()
}
if (datatype %in% c("spatial")) {
if (ncol(coordinates) == 2) {
colnames(coordinates) <- c("x_cent","y_cent")
} else {
stop("Please check the input 'coordinates' and make sure it is a two column matrix.")
}
if (is.null(scale.factors) | !("spot.diameter" %in% names(scale.factors)) | !("spot" %in% names(scale.factors))) {
stop("scale.factors with elements named `spot.diameter` and `spot` should be provided!")
} else {
images = list("coordinates" = coordinates,
"scale.factors" = scale.factors)
}
cat("Create a CellChat object from spatial imaging data...",'\n')
} else {
images <- list()
}
object <- methods::new(Class = "CellChat",
data = data,
images = images,
meta = meta)
if (!is.null(meta) & nrow(meta) > 0) {
cat("Set cell identities for the new CellChat object", '\n')
if (!(group.by %in% colnames(meta))) {
stop("The 'group.by' is not a column name in the `meta`, which will be used for cell grouping.")
}
object <- setIdent(object, ident.use = group.by) # set "labels" as default cell identity
cat("The cell groups used for CellChat analysis are ", levels(object@idents), '\n')
}
object@options$mode <- "single"
object@options$datatype <- datatype
return(object)
}
#' Merge CellChat objects
#'
#' @param object.list A list of multiple CellChat objects
#' @param add.names A vector containing the name of each dataset
#' @param merge.data whether merging the data for ALL genes. Default only merges the data of signaling genes
#' @param cell.prefix whether prefix cell names
#' @importFrom methods slot new
#'
#' @return
#' @export
#'
#' @examples
mergeCellChat <- function(object.list, add.names = NULL, merge.data = FALSE, cell.prefix = FALSE) {
if (is.null(add.names)) {
add.names <- paste("Dataset",1:length(object.list),sep = "_")
}
slot.name <- c("net", "netP", "idents" ,"LR", "var.features", "images")
slot.combined <- vector("list", length(slot.name))
names(slot.combined) <- slot.name
for (i in 1:length(slot.name)) {
object.slot <- vector("list", length(object.list))
for (j in 1:length(object.list)) {
object.slot[[j]] <- slot(object.list[[j]], slot.name[i])
}
slot.combined[[i]] <- object.slot
names(slot.combined[[i]]) <- add.names
}
if (cell.prefix) {
warning("Prefix cell names!")
for (i in 1:length(object.list)) {colnames(object.list[[i]]@data) <- paste(colnames(object.list[[i]]@data), add.names[i], sep = "_")}
} else {
cell.names <- c()
for (i in 1:length(object.list)) {
cell.names <- c(cell.names, colnames(object.list[[i]]@data))
}
if (sum(duplicated(cell.names))) {
stop("Duplicated cell names were detected across datasets!! Please set cell.prefix = TRUE")
}
}
meta.use <- colnames(object.list[[1]]@meta)
for (i in 2:length(object.list)) {
meta.use <- meta.use[meta.use %in% colnames(object.list[[i]]@meta)]
}
dataset.name <- c()
cell.names <- c()
meta.joint <- data.frame()
for (i in 1:length(object.list)) {
dataset.name <- c(dataset.name, rep(add.names[i], length(colnames(object.list[[i]]@data))))
cell.names <- c(cell.names, colnames(object.list[[i]]@data))
meta.joint <- rbind(meta.joint, object.list[[i]]@meta[ , meta.use, drop = FALSE])
}
if (!identical(rownames(meta.joint), cell.names)) {
cat("The cell barcodes in merged 'meta' is ", head(rownames(meta.joint)),'\n')
warning("The cell barcodes in merged 'meta' is different from those in the used data matrix.
We now simply assign the colnames in the data matrix to the rownames of merged 'mata'!")
rownames(meta.joint) <- cell.names
}
#dataset.name <- data.frame(dataset.name = dataset.name, row.names = cell.names)
meta.joint$datasets <- factor(dataset.name, levels = add.names)
genes.use <- rownames(object.list[[1]]@data)
for (i in 2:length(object.list)) {
genes.use <- genes.use[genes.use %in% rownames(object.list[[i]]@data)]
}
data.joint <- c()
for (i in 1:length(object.list)) {
data.joint <- cbind(data.joint, object.list[[i]]@data[genes.use, ])
}
gene.signaling.joint = unique(unlist(lapply(object.list, function(x) rownames([email protected]))))
data.signaling.joint <- data.joint[rownames(data.joint) %in% gene.signaling.joint, ]
idents.joint <- c()
idents.levels <- c()
for (i in 1:length(object.list)) {
idents.joint <- c(idents.joint, as.character(object.list[[i]]@idents))
idents.levels <- union(idents.levels, levels(object.list[[i]]@idents))
}
names(idents.joint) <- cell.names
idents.joint <- factor(idents.joint, levels = idents.levels)
slot.combined$idents$joint <- idents.joint
if (merge.data) {
message("Merge the following slots: 'data','data.signaling','images','net', 'netP','meta', 'idents', 'var.features', 'DB', and 'LR'.")
merged.object <- methods::new(
Class = "CellChat",
data = data.joint,
data.signaling = data.signaling.joint,
images = slot.combined$images,
net = slot.combined$net,
netP = slot.combined$netP,
meta = meta.joint,
idents = slot.combined$idents,
var.features = slot.combined$var.features,
LR = slot.combined$LR,
DB = object.list[[1]]@DB)
} else {
message("Merge the following slots: 'data.signaling','images','net', 'netP','meta', 'idents', 'var.features' , 'DB', and 'LR'.")
merged.object <- methods::new(
Class = "CellChat",
data.signaling = data.signaling.joint,
images = slot.combined$images,
net = slot.combined$net,
netP = slot.combined$netP,
meta = meta.joint,
idents = slot.combined$idents,
var.features = slot.combined$var.features,
LR = slot.combined$LR,
DB = object.list[[1]]@DB)
}
merged.object@options$mode <- "merged"
datatype.joint <- c()
for (j in 1:length(object.list)) {
datatype.joint <- union(datatype.joint, slot(object.list[[j]], "options")$datatype)
}
if (length(datatype.joint) == 1){
merged.object@options$datatype <- datatype.joint
} else {
message("The data types in these objects are ", datatype.joint,'\n')
stop("Comparison analysis is not suggested for different types of data.")
}
return(merged.object)
}
#' Update a single CellChat object
#'
#' Update a single previously calculated CellChat object (version < 1.6.0)
#'
#' version < 0.5.0: `[email protected]` is now `[email protected]$features`; `object@net$sum` is now `object@net$weight` if `aggregateNet` has been run.
#'
#' version 1.6.0: a `object@images` slot is added and `datatype` is added in `object@options$datatype`
#'
#' @param object CellChat object
#'
#' @return a updated CellChat object
#' @export
#'
updateCellChat <- function(object) {
if (is.character([email protected])) {
message("Update slot 'var.features' from a vector to a list")
var.features.new <- list(features = [email protected])
} else {
var.features.new <- [email protected]
}
if ("sum" %in% names(object@net)) {
net <- object@net
net$weight <- net$sum
} else {
net <- object@net
}
if (!("mode" %in% names(object@options))) {
object@options$mode <- "single"
}
if (!("datatype" %in% names(object@options))) {
object@options$datatype <- "RNA"
images = list()
} else {
images = object@images
}
object.new <- methods::new(
Class = "CellChat",
data.raw = [email protected],
data = object@data,
data.signaling = [email protected],
data.scale = [email protected],
data.project = [email protected],
images = images,
net = net,
netP = object@netP,
meta = object@meta,
idents = object@idents,
DB = object@DB,
LR = object@LR,
var.features = var.features.new,
dr = object@dr,
options = object@options
)
return(object.new)
}
#' Update a CellChat object by lifting up the cell groups to the same cell labels across all datasets
#'
#' This function is useful when comparing inferred communications across different datasets with different cellular compositions
#'
#' @param object A single or merged CellChat object
#' @param group.new A char vector giving the cell labels to lift up. The order of cell labels in the vector will be used for setting the new cell identity.
#'
#' If the input is a merged CellChat object and group.new = NULL, it will use the cell labels from one dataset with the maximum number of cell groups
#'
#' If the input is a single CellChat object, `group.new` must be defined.
#'
#' @return a updated CellChat object
#'
#' @export
#'
liftCellChat <- function(object, group.new = NULL) {
if (object@options$mode == "merged") {
idents <- object@idents[1:(length(object@idents)-1)]
if (is.null(group.new)) {
group.max.all <- unique(unlist(sapply(idents, levels)))
group.num <- sapply(idents, nlevels)
group.num.max <- max(group.num)
group.max <- levels(idents[[which(group.num == group.num.max)]])
if (length(group.max) != length(group.max.all)) {
stop("CellChat object cannot lift up due to the missing cell groups in any dataset. Please define the parameter `group.new`!")
}
} else {
group.max <- group.new
group.num.max <- length(group.new)
}
message(paste0("The CellChat object will be lifted up using the cell labels ", paste(group.max, collapse=", ")))
for (i in 1:length(idents)) {
cat("Update slots object@net, object@netP, object@idents in dataset ", names(object@idents)[i],'\n')
# cat("Update slot object@net...", '\n')
net <- object@net[[i]]
group.i <- levels(idents[[i]])
# group.existing <- group.max[group.max %in% group.i]
group.existing <- group.i[group.i %in% group.max]
group.existing.index <- which(group.max %in% group.existing)
for (net.j in names(net)) {
values <- net[[net.j]]
if (net.j %in% c("prob","pval")) {
values.new <- array(data = 0, dim = c(group.num.max, group.num.max, dim(values)[3]),
dimnames = list(group.max, group.max, dimnames(values)[[3]]))
values.new[group.existing.index, group.existing.index, ] <- values
net[[net.j]] <- values.new
}
if (net.j %in% c("count","sum","weight")) {
values.new <- array(data = 0, dim = c(group.num.max, group.num.max),
dimnames = list(group.max, group.max))
values.new[group.existing.index, group.existing.index] <- values
net[[net.j]] <- values.new
}
if (net.j %in% c("pairwiseRank")) {
for (k in 1:length(values)) {
values.new1 <- vector("list", group.num.max)
values.new1[group.existing.index] <- values[[k]]
temp <- values[[k]][[1]]
temp$prob <- 0; temp$pval <- 1
for (kk in setdiff(1:group.num.max, group.existing.index)) {
values.new1[[kk]] <- temp
}
names(values.new1) <- group.max
values[[k]] <- values.new1
}
values.new <- vector("list", group.num.max)
values.new[group.existing.index] <- values
temp <- lapply(values.new1, function(x) {
x$prob <- 0; x$pval <- 1
return(x)
})
for (kk in setdiff(1:group.num.max, group.existing.index)) {
values.new[[kk]] <- temp
}
names(values.new) <- group.max
}
net[[net.j]] <- values.new
}
object@net[[i]] <- net
# cat("Update slot object@netP...", '\n')
netP <- object@netP[[i]]
for (netP.j in names(netP)) {
values <- netP[[netP.j]]
if (netP.j %in% c("pathways")) {
values.new <- values
netP[[netP.j]] <- values.new
}
if (netP.j %in% c("prob")) {
values.new <- array(data = 0, dim = c(group.num.max, group.num.max, dim(values)[3]),
dimnames = list(group.max, group.max, dimnames(values)[[3]]))
values.new[group.existing.index, group.existing.index, ] <- values
netP[[netP.j]] <- values.new
}
if (netP.j %in% c("centr")) {
for (k in 1:length(values)) {
values.new <- lapply(values, function(x) {
values.new2 <- lapply(x, function(x) {
values.new1 = as.vector(matrix(0, nrow = 1, ncol = group.num.max))
values.new1[group.existing.index] <- x
names(values.new1) <- group.max
return(values.new1)
})
names(values.new2) <- names(x)
return(values.new2)
})
names(values.new) <- names(values)
}
netP[[netP.j]] <- values.new
}
}
object@netP[[i]] <- netP
# cat("Update slot object@idents...", '\n')
# idents[[i]] <- factor(group.max, levels = group.max)
idents[[i]] <- factor(idents[[i]], levels = group.max)
}
object@idents[1:(length(object@idents)-1)] <- idents
} else {
if (is.null(group.new)) {
stop("Please define the parameter `group.new`!")
} else {
group.max <- as.character(group.new)
group.num.max <- length(group.new)
message(paste0("The CellChat object will be lifted up using the cell labels ", paste(group.max, collapse=", ")))
}
cat("Update slots object@net, object@netP, object@idents in a single dataset...", '\n')
# cat("Update slot object@net...", '\n')
net <- object@net
idents <- object@idents
group.i <- levels(idents)
# group.existing <- group.max[group.max %in% group.i]
group.existing <- group.i[group.i %in% group.max]
group.existing.index <- which(group.max %in% group.existing)
for (net.j in names(net)) {
values <- net[[net.j]]
if (net.j %in% c("prob","pval")) {
values.new <- array(data = 0, dim = c(group.num.max, group.num.max, dim(values)[3]),
dimnames = list(group.max, group.max, dimnames(values)[[3]]))
values.new[group.existing.index, group.existing.index, ] <- values
net[[net.j]] <- values.new
}
if (net.j %in% c("count","sum","weight")) {
values.new <- array(data = 0, dim = c(group.num.max, group.num.max),
dimnames = list(group.max, group.max))
values.new[group.existing.index, group.existing.index] <- values
net[[net.j]] <- values.new
}
if (net.j %in% c("pairwiseRank")) {
for (k in 1:length(values)) {
values.new1 <- vector("list", group.num.max)
values.new1[group.existing.index] <- values[[k]]
temp <- values[[k]][[1]]
temp$prob <- 0; temp$pval <- 1
for (kk in setdiff(1:group.num.max, group.existing.index)) {
values.new1[[kk]] <- temp
}
names(values.new1) <- group.max
values[[k]] <- values.new1
}
values.new <- vector("list", group.num.max)
values.new[group.existing.index] <- values
temp <- lapply(values.new1, function(x) {
x$prob <- 0; x$pval <- 1
return(x)
})
for (kk in setdiff(1:group.num.max, group.existing.index)) {
values.new[[kk]] <- temp
}
names(values.new) <- group.max
}
net[[net.j]] <- values.new
}
object@net <- net
# cat("Update slot object@netP...", '\n')
netP <- object@netP
for (netP.j in names(netP)) {
values <- netP[[netP.j]]
if (netP.j %in% c("pathways")) {
values.new <- values
netP[[netP.j]] <- values.new
}
if (netP.j %in% c("prob")) {
values.new <- array(data = 0, dim = c(group.num.max, group.num.max, dim(values)[3]),
dimnames = list(group.max, group.max, dimnames(values)[[3]]))
values.new[group.existing.index, group.existing.index, ] <- values
netP[[netP.j]] <- values.new
}
if (netP.j %in% c("centr")) {
for (k in 1:length(values)) {
values.new <- lapply(values, function(x) {
values.new2 <- lapply(x, function(x) {
values.new1 = as.vector(matrix(0, nrow = 1, ncol = group.num.max))
values.new1[group.existing.index] <- x
names(values.new1) <- group.max
return(values.new1)
})
names(values.new2) <- names(x)
return(values.new2)
})
names(values.new) <- names(values)
}
}
netP[[netP.j]] <- values.new
}
object@netP <- netP
# cat("Update slot object@idents...", '\n')
idents <- factor(idents, levels = group.max)
object@idents <- idents
}
return(object)
}
#' Subset CellChat object using a portion of cells
#'
#' @param object A CellChat object (either an object from a single dataset or a merged objects from multiple datasets)
#' @param cells.use a char vector giving the cell barcodes to subset. If cells.use = NULL, USER must define `idents.use`
#' @param idents.use a subset of cell groups used for analysis
#' @param group.by cell group information; default is `object@idents`; otherwise it should be one of the column names of the meta slot
#' @param invert whether invert the idents.use
#' @param thresh threshold of the p-value for determining significant interaction. A parameter as an input of the function `computeCommunProbPathway`
#' @importFrom methods slot new
#'
#' @return
#' @export
#'
subsetCellChat <- function(object, cells.use = NULL, idents.use = NULL, group.by = NULL, invert = FALSE, thresh = 0.05) {
if (!is.null(idents.use)) {
if (is.null(group.by)) {
labels <- object@idents
if (object@options$mode == "merged") {
message("Use the joint cell labels from the merged CellChat object")
labels <- object@idents$joint
}
} else {
labels <- object@meta[[group.by]]
}
if (!is.factor(labels)) {
labels <- factor(labels)
}
names(labels) = colnames(object@data) # The new line to name the factor by cell id and fix the level.use is NULL issue
level.use0 <- levels(labels)
level.use <- levels(labels)[levels(labels) %in% unique(labels)]
if (invert) {
level.use <- level.use[!(level.use %in% idents.use)]
} else {
level.use <- level.use[level.use %in% idents.use]
}
cells.use.index <- which(as.character(labels) %in% level.use)
cells.use <- names(labels)[cells.use.index]
} else if (!is.null(cells.use)) {
labels <- object@idents
if (object@options$mode == "merged") {
message("Use the joint cell labels from the merged CellChat object")
labels <- object@idents$joint
}
names(labels) = colnames(object@data) # The new line to name the factor by cell id and fix the level.use is NULL issue
level.use0 <- levels(labels)
level.use <- levels(labels)[levels(labels) %in% unique(as.character(labels[cells.use]))]
cells.use.index <- which(names(labels) %in% cells.use)
} else {
stop("USER should define either `cells.use` or `idents.use`!")
}
cat("The subset of cell groups used for CellChat analysis are ", level.use, '\n')
if (nrow(object@data) > 0) {
data.subset <- object@data[, cells.use.index]
} else {
data.subset <- matrix(0, nrow = 0, ncol = 0)
}
if (nrow([email protected]) > 0) {
data.project.subset <- [email protected][, cells.use.index]
} else {
data.project.subset <- matrix(0, nrow = 0, ncol = 0)
}
data.signaling.subset <- [email protected][, cells.use.index]
meta.subset <- object@meta[cells.use.index, , drop = FALSE]
if (object@options$mode == "merged") {
idents <- object@idents[1:(length(object@idents)-1)]
group.existing <- level.use0[level.use0 %in% level.use]
group.existing.index <- which(level.use0 %in% level.use)
net.subset <- vector("list", length = length(object@net))
netP.subset <- vector("list", length = length(object@netP))
idents.subset <- vector("list", length = length(idents))
names(net.subset) <- names(object@net)
names(netP.subset) <- names(object@netP)
names(idents.subset) <- names(object@idents[1:(length(object@idents)-1)])
images.subset <- vector("list", length = length(idents))
names(images.subset) <- names(object@idents[1:(length(object@idents)-1)])
for (i in 1:length(idents)) {
cat("Update slots object@images, object@net, object@netP, object@idents in dataset ", names(object@idents)[i],'\n')
images <- object@images[[i]]
for (images.j in names(images)) {
values <- images[[images.j]]
if (images.j %in% c("coordinates")) {
values.new <- values[cells.use.index, ]
images[[images.j]] <- values.new
}
if (images.j %in% c("distance")) {
values.new <- values[group.existing.index, group.existing.index, drop = FALSE]
images[[images.j]] <- values.new
}
}
images.subset[[i]] <- images
# cat("Update slot object@net...", '\n')
net <- object@net[[i]]
for (net.j in names(net)) {
values <- net[[net.j]]
if (net.j %in% c("prob","pval")) {
values.new <- values[group.existing.index, group.existing.index, ]
net[[net.j]] <- values.new
}
if (net.j %in% c("count","sum","weight")) {
values.new <- values[group.existing.index, group.existing.index]
net[[net.j]] <- values.new
}
# net[[net.j]] <- values.new
}
net.subset[[i]] <- net
# cat("Update slot object@netP...", '\n')
# netP <- object@netP[[i]]
# for (netP.j in names(netP)) {
# values <- netP[[netP.j]]
# if (netP.j %in% c("pathways")) {
# values.new <- values
# netP[[netP.j]] <- values.new
# }
# if (netP.j %in% c("prob")) {
# values.new <- values[group.existing.index, group.existing.index, ]
# netP[[netP.j]] <- values.new
# }
# if (netP.j %in% c("centr")) {
# for (k in 1:length(values)) {
# values.new <- lapply(values, function(x) {
# values.new2 <- lapply(x, function(x) {
# values.new1 <- x[group.existing.index]
# names(values.new1) <- group.existing
# return(values.new1)
# })
# names(values.new2) <- names(x)
# return(values.new2)
# })
# names(values.new) <- names(values)
# }
# }
# netP[[netP.j]] <- values.new
# }
netP = computeCommunProbPathway(net = net.subset[[i]], pairLR.use = object@LR[[i]]$LRsig, thresh = thresh)
netP$centr = netAnalysis_computeCentrality(net = net.subset[[i]]$prob)
netP.subset[[i]] <- netP
idents.subset[[i]] <- idents[[i]][names(idents[[i]]) %in% cells.use]
idents.subset[[i]] <- factor(idents.subset[[i]], levels = levels(idents[[i]])[levels(idents[[i]]) %in% level.use])
}
idents.subset$joint <- factor(object@idents$joint[cells.use.index], levels = level.use)
} else {
cat("Update slots object@images, object@net, object@netP in a single dataset...", '\n')
group.existing <- level.use0[level.use0 %in% level.use]
group.existing.index <- which(level.use0 %in% level.use)
images <- object@images
for (images.j in names(images)) {
values <- images[[images.j]]
if (images.j %in% c("coordinates")) {
values.new <- values[cells.use.index, ]
images[[images.j]] <- values.new
}
if (images.j %in% c("distance")) {
values.new <- values[group.existing.index, group.existing.index, drop = FALSE]
images[[images.j]] <- values.new
}
}
images.subset <- images
# cat("Update slot object@net...", '\n')
net <- object@net
for (net.j in names(net)) {
values <- net[[net.j]]
if (net.j %in% c("prob","pval")) {
values.new <- values[group.existing.index, group.existing.index, , drop = FALSE]
net[[net.j]] <- values.new
}
if (net.j %in% c("count","sum","weight")) {
values.new <- values[group.existing.index, group.existing.index, drop = FALSE]
net[[net.j]] <- values.new
}
}
net.subset <- net
# cat("Update slot object@netP...", '\n')
# netP <- object@netP
# for (netP.j in names(netP)) {
# values <- netP[[netP.j]]
# if (netP.j %in% c("pathways")) {
# values.new <- values
# netP[[netP.j]] <- values.new
# }
# if (netP.j %in% c("prob")) {
# values.new <- values[group.existing.index, group.existing.index, ]
# netP[[netP.j]] <- values.new
# }
# if (netP.j %in% c("centr")) {
# for (k in 1:length(values)) {
# values.new <- lapply(values, function(x) {
# values.new2 <- lapply(x, function(x) {
# values.new1 <- x[group.existing.index]
# names(values.new1) <- group.existing
# return(values.new1)
# })
# names(values.new2) <- names(x)
# return(values.new2)
# })
# names(values.new) <- names(values)
# }
# }
# netP[[netP.j]] <- values.new
# }
netP = computeCommunProbPathway(net = net.subset, pairLR.use = object@LR$LRsig, thresh = thresh)
netP$centr = netAnalysis_computeCentrality(net = net.subset$prob)
netP.subset <- netP
idents.subset <- object@idents[cells.use.index]
idents.subset <- factor(idents.subset, levels = level.use)
}
object.subset <- methods::new(
Class = "CellChat",
data = data.subset,
data.signaling = data.signaling.subset,
data.project = data.project.subset,
images = images.subset,
net = net.subset,
netP = netP.subset,
meta = meta.subset,
idents = idents.subset,
var.features = [email protected],
LR = object@LR,
DB = object@DB,
options = object@options
)
return(object.subset)
}