-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
53 lines (42 loc) · 1.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
from net.network import model
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
from generator import train_generator, valid_generator
def loss_function_1(y_true, y_pred):
""" Probabilistic output loss """
a = tf.clip_by_value(y_pred, 1e-20, 1)
b = tf.clip_by_value(tf.subtract(1.0, y_pred), 1e-20, 1)
cross_entropy = - tf.multiply(y_true, tf.log(a)) - tf.multiply(tf.subtract(1.0, y_true), tf.log(b))
cross_entropy = tf.reduce_mean(cross_entropy, 0)
loss = tf.reduce_mean(cross_entropy)
return loss
def loss_function_2(y_true, y_pred):
""" Positional output loss """
square_diff = tf.squared_difference(y_true, y_pred)
mask = tf.not_equal(y_true, 0)
mask = tf.cast(mask, tf.float32)
square_diff = tf.multiply(square_diff, mask)
square_diff = tf.reduce_mean(square_diff, 1)
square_diff = tf.reduce_mean(square_diff, 0)
loss = tf.reduce_mean(square_diff)
return loss
# Creating the model
model = model()
model.summary()
# Compile
adam = Adam(lr=1e-5, beta_1=0.9, beta_2=0.999, epsilon=1e-10, decay=0.0)
loss_function = {"probabilistic_output": loss_function_1, "positional_output": loss_function_2}
metrics = {"probabilistic_output": loss_function_1, "positional_output": loss_function_2}
model.compile(optimizer=adam, loss=loss_function, metrics=metrics)
# Train
epochs = 100
train_gen = train_generator(sample_per_batch=8, batch_number=3136)
val_gen = valid_generator(sample_per_batch=64, batch_number=20)
checkpoints = ModelCheckpoint('weights/performance{epoch:03d}.h5', save_weights_only=True, period=1)
history = model.fit_generator(train_gen, steps_per_epoch=3136, epochs=epochs, verbose=1,
validation_data=val_gen, validation_steps=20,
shuffle=True, callbacks=[checkpoints], max_queue_size=100)
with open('history.txt', 'a+') as f:
print(history.history, file=f)
print('All Done!')