Skip to content

Latest commit

 

History

History
96 lines (76 loc) · 2.28 KB

SETUP.md

File metadata and controls

96 lines (76 loc) · 2.28 KB

Setup

clone this code

git clone https://github.com/PeihaoChen/WS-MGMap.git
cd WS-MGMap

Python

This project is developed with Python 3.6.13. If you are using miniconda or anaconda, you can create an environment:

conda create -n wsmgmap python==3.6.13
conda activate wsmgmap

Pytorch

VLN-CE uses Pytorch 1.6.0 & Cuda 10.2 which can be built installed from conda:

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch

Habitat

VLN-CE uses Habitat-Sim 0.1.5 which can be built from source or installed from conda:

conda install -y -c aihabitat -c conda-forge bullet=2.88 habitat-sim=0.1.5 headless withbullet python=3.6

Tips: You'd better to install bullet and withbulllet simultaneously, in order to avoid ImportError at run time.

Then install Habitat-Lab:

git clone --branch v0.1.5 https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab
# installs both habitat and habitat_baselines
pip install --upgrade pip   # update pip
python -m pip install -r requirements.txt

python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all

WS-MGMap for VLN

cd ..
pip install -r requirements.txt

# requirements
conda install psutil 
pip install einops 

# torch_scatter
cd data
wget https://data.pyg.org/whl/torch-1.6.0%2Bcu102/torch_scatter-2.0.6-cp36-cp36m-linux_x86_64.whl
pip install torch_scatter-2.0.6-cp36-cp36m-linux_x86_64.whl
cd ..

Data

# Fisrt install the gdown to download data in google drive.
pip install gdown

mkdir data
cd data

Semantic Map

# Download map_data.tar.gz
gdown https://drive.google.com/uc?id=1pJwx0E95WsJXThcx8tPrUTB_6gTlryoy
tar -xvf map_data.tar.gz

# Unzip all train files
cd map_data/semantic/train
find . -name '*.tar.gz' -print0 | xargs -0 -I {} -P 10 tar -zvxf {}

# Unzip all train_aug files
cd ../train_aug
find . -name '*.tar.gz' -print0 | xargs -0 -I {} -P 10 tar -zvxf {}

Pre-Trained Model

gdown https://drive.google.com/uc?id=1DYkXbRIBVgMU1qHF_mLT41esSAdcQJaf
tar -zxvf pretrain_model.tar.gz

Trained model

gdown https://drive.google.com/uc?id=1HcD8s-tyBeH2LsXs6Rj5x5DC1hVD4GNs
tar -zxvf trained_model.tar.gz