forked from xingyizhou/CenterNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_kitti_to_coco.py
152 lines (138 loc) · 5.8 KB
/
convert_kitti_to_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pickle
import json
import numpy as np
import cv2
DATA_PATH = '../../data/kitti/'
DEBUG = False
# VAL_PATH = DATA_PATH + 'training/label_val/'
import os
SPLITS = ['3dop', 'subcnn']
import _init_paths
from utils.ddd_utils import compute_box_3d, project_to_image, alpha2rot_y
from utils.ddd_utils import draw_box_3d, unproject_2d_to_3d
'''
#Values Name Description
----------------------------------------------------------------------------
1 type Describes the type of object: 'Car', 'Van', 'Truck',
'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram',
'Misc' or 'DontCare'
1 truncated Float from 0 (non-truncated) to 1 (truncated), where
truncated refers to the object leaving image boundaries
1 occluded Integer (0,1,2,3) indicating occlusion state:
0 = fully visible, 1 = partly occluded
2 = largely occluded, 3 = unknown
1 alpha Observation angle of object, ranging [-pi..pi]
4 bbox 2D bounding box of object in the image (0-based index):
contains left, top, right, bottom pixel coordinates
3 dimensions 3D object dimensions: height, width, length (in meters)
3 location 3D object location x,y,z in camera coordinates (in meters)
1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi]
1 score Only for results: Float, indicating confidence in
detection, needed for p/r curves, higher is better.
'''
def _bbox_to_coco_bbox(bbox):
return [(bbox[0]), (bbox[1]),
(bbox[2] - bbox[0]), (bbox[3] - bbox[1])]
def read_clib(calib_path):
f = open(calib_path, 'r')
for i, line in enumerate(f):
if i == 2:
calib = np.array(line[:-1].split(' ')[1:], dtype=np.float32)
calib = calib.reshape(3, 4)
return calib
cats = ['Pedestrian', 'Car', 'Cyclist', 'Van', 'Truck', 'Person_sitting',
'Tram', 'Misc', 'DontCare']
cat_ids = {cat: i + 1 for i, cat in enumerate(cats)}
# cat_info = [{"name": "pedestrian", "id": 1}, {"name": "vehicle", "id": 2}]
F = 721
H = 384 # 375
W = 1248 # 1242
EXT = [45.75, -0.34, 0.005]
CALIB = np.array([[F, 0, W / 2, EXT[0]], [0, F, H / 2, EXT[1]],
[0, 0, 1, EXT[2]]], dtype=np.float32)
cat_info = []
for i, cat in enumerate(cats):
cat_info.append({'name': cat, 'id': i + 1})
for SPLIT in SPLITS:
image_set_path = DATA_PATH + 'ImageSets_{}/'.format(SPLIT)
ann_dir = DATA_PATH + 'training/label_2/'
calib_dir = DATA_PATH + '{}/calib/'
splits = ['train', 'val']
# splits = ['trainval', 'test']
calib_type = {'train': 'training', 'val': 'training', 'trainval': 'training',
'test': 'testing'}
for split in splits:
ret = {'images': [], 'annotations': [], "categories": cat_info}
image_set = open(image_set_path + '{}.txt'.format(split), 'r')
image_to_id = {}
for line in image_set:
if line[-1] == '\n':
line = line[:-1]
image_id = int(line)
calib_path = calib_dir.format(calib_type[split]) + '{}.txt'.format(line)
calib = read_clib(calib_path)
image_info = {'file_name': '{}.png'.format(line),
'id': int(image_id),
'calib': calib.tolist()}
ret['images'].append(image_info)
if split == 'test':
continue
ann_path = ann_dir + '{}.txt'.format(line)
# if split == 'val':
# os.system('cp {} {}/'.format(ann_path, VAL_PATH))
anns = open(ann_path, 'r')
if DEBUG:
image = cv2.imread(
DATA_PATH + 'images/trainval/' + image_info['file_name'])
for ann_ind, txt in enumerate(anns):
tmp = txt[:-1].split(' ')
cat_id = cat_ids[tmp[0]]
truncated = int(float(tmp[1]))
occluded = int(tmp[2])
alpha = float(tmp[3])
bbox = [float(tmp[4]), float(tmp[5]), float(tmp[6]), float(tmp[7])]
dim = [float(tmp[8]), float(tmp[9]), float(tmp[10])]
location = [float(tmp[11]), float(tmp[12]), float(tmp[13])]
rotation_y = float(tmp[14])
ann = {'image_id': image_id,
'id': int(len(ret['annotations']) + 1),
'category_id': cat_id,
'dim': dim,
'bbox': _bbox_to_coco_bbox(bbox),
'depth': location[2],
'alpha': alpha,
'truncated': truncated,
'occluded': occluded,
'location': location,
'rotation_y': rotation_y}
ret['annotations'].append(ann)
if DEBUG and tmp[0] != 'DontCare':
box_3d = compute_box_3d(dim, location, rotation_y)
box_2d = project_to_image(box_3d, calib)
# print('box_2d', box_2d)
image = draw_box_3d(image, box_2d)
x = (bbox[0] + bbox[2]) / 2
'''
print('rot_y, alpha2rot_y, dlt', tmp[0],
rotation_y, alpha2rot_y(alpha, x, calib[0, 2], calib[0, 0]),
np.cos(
rotation_y - alpha2rot_y(alpha, x, calib[0, 2], calib[0, 0])))
'''
depth = np.array([location[2]], dtype=np.float32)
pt_2d = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
dtype=np.float32)
pt_3d = unproject_2d_to_3d(pt_2d, depth, calib)
pt_3d[1] += dim[0] / 2
print('pt_3d', pt_3d)
print('location', location)
if DEBUG:
cv2.imshow('image', image)
cv2.waitKey()
print("# images: ", len(ret['images']))
print("# annotations: ", len(ret['annotations']))
# import pdb; pdb.set_trace()
out_path = '{}/annotations/kitti_{}_{}.json'.format(DATA_PATH, SPLIT, split)
json.dump(ret, open(out_path, 'w'))