forked from DCC-EX/CommandStation-EX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEXRAIL2.cpp
1100 lines (921 loc) · 29.6 KB
/
EXRAIL2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* © 2021 Neil McKechnie
* © 2021-2022 Harald Barth
* © 2020-2022 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* EXRAILPlus planned FEATURE additions
F1. [DONE] DCC accessory packet opcodes (short and long form)
F2. [DONE] ONAccessory catchers
F3. [DONE] Turnout descriptions for Withrottle
F4. Oled announcements (depends on HAL)
F5. Withrottle roster info
F6. Multi-occupancy semaphore
F7. [DONE see AUTOSTART] Self starting sequences
F8. Park/unpark
F9. [DONE] Analog drive
F10. [DONE] Alias anywhere
F11. [DONE]EXRAIL/ENDEXRAIL unnecessary
F12. [DONE] Allow guarded code (as effect of ALIAS anywhere)
F13. [DONE] IFGTE/IFLT function
*/
/* EXRAILPlus planned TRANSPARENT additions
T1. [DONE] RAM based fast lookup for sequences ON* event catchers and signals.
T2. Extend to >64k
*/
#include <Arduino.h>
#include "EXRAIL2.h"
#include "DCC.h"
#include "DCCWaveform.h"
#include "DIAG.h"
#include "WiThrottle.h"
#include "DCCEXParser.h"
#include "Turnouts.h"
#include "CommandDistributor.h"
// Command parsing keywords
const int16_t HASH_KEYWORD_EXRAIL=15435;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_START=23232;
const int16_t HASH_KEYWORD_RESERVE=11392;
const int16_t HASH_KEYWORD_FREE=-23052;
const int16_t HASH_KEYWORD_LATCH=1618;
const int16_t HASH_KEYWORD_UNLATCH=1353;
const int16_t HASH_KEYWORD_PAUSE=-4142;
const int16_t HASH_KEYWORD_RESUME=27609;
const int16_t HASH_KEYWORD_KILL=5218;
const int16_t HASH_KEYWORD_ALL=3457;
const int16_t HASH_KEYWORD_ROUTES=-3702;
const int16_t HASH_KEYWORD_RED=26099;
const int16_t HASH_KEYWORD_AMBER=18713;
const int16_t HASH_KEYWORD_GREEN=-31493;
// One instance of RMFT clas is used for each "thread" in the automation.
// Each thread manages a loco on a journey through the layout, and/or may manage a scenery automation.
// The threads exist in a ring, each time through loop() the next thread in the ring is serviced.
// Statics
const int16_t LOCO_ID_WAITING=-99; // waiting for loco id from prog track
int16_t RMFT2::progtrackLocoId; // used for callback when detecting a loco on prog track
bool RMFT2::diag=false; // <D EXRAIL ON>
RMFT2 * RMFT2::loopTask=NULL; // loopTask contains the address of ONE of the tasks in a ring.
RMFT2 * RMFT2::pausingTask=NULL; // Task causing a PAUSE.
// when pausingTask is set, that is the ONLY task that gets any service,
// and all others will have their locos stopped, then resumed after the pausing task resumes.
byte RMFT2::flags[MAX_FLAGS];
LookList * RMFT2::sequenceLookup=NULL;
LookList * RMFT2::onThrowLookup=NULL;
LookList * RMFT2::onCloseLookup=NULL;
LookList * RMFT2::onActivateLookup=NULL;
LookList * RMFT2::onDeactivateLookup=NULL;
#define GET_OPCODE GETFLASH(RMFT2::RouteCode+progCounter)
#define GET_OPERAND(n) GETFLASHW(RMFT2::RouteCode+progCounter+1+(n*3))
#define SKIPOP progCounter+=3
LookList::LookList(int16_t size) {
m_size=size;
m_loaded=0;
if (size) {
m_lookupArray=new int16_t[size];
m_resultArray=new int16_t[size];
}
}
void LookList::add(int16_t lookup, int16_t result) {
if (m_loaded==m_size) return; // and forget
m_lookupArray[m_loaded]=lookup;
m_resultArray[m_loaded]=result;
m_loaded++;
}
int16_t LookList::find(int16_t value) {
for (int16_t i=0;i<m_size;i++) {
if (m_lookupArray[i]==value) return m_resultArray[i];
}
return -1;
}
/* static */ void RMFT2::begin() {
DCCEXParser::setRMFTFilter(RMFT2::ComandFilter);
for (int f=0;f<MAX_FLAGS;f++) flags[f]=0;
int progCounter;
// counters to create lookup arrays
int sequenceCount=0; // to allow for seq 0 at start
int onThrowCount=0;
int onCloseCount=0;
int onActivateCount=0;
int onDeactivateCount=0;
// first pass count sizes for fast lookup arrays
for (progCounter=0;; SKIPOP) {
byte opcode=GET_OPCODE;
if (opcode==OPCODE_ENDEXRAIL) break;
switch (opcode) {
case OPCODE_ROUTE:
case OPCODE_AUTOMATION:
case OPCODE_SEQUENCE:
sequenceCount++;
break;
case OPCODE_ONTHROW:
onThrowCount++;
break;
case OPCODE_ONCLOSE:
onCloseCount++;
break;
case OPCODE_ONACTIVATE:
onActivateCount++;
break;
case OPCODE_ONDEACTIVATE:
onDeactivateCount++;
break;
default: // Ignore
break;
}
}
// create lookups
sequenceLookup=new LookList(sequenceCount);
onThrowLookup=new LookList(onThrowCount);
onCloseLookup=new LookList(onCloseCount);
onActivateLookup=new LookList(onActivateCount);
onDeactivateLookup=new LookList(onDeactivateCount);
// Second pass startup, define any turnouts or servos, set signals red
// add sequences onRoutines to the lookups
for (int sigpos=0;;sigpos+=4) {
VPIN sigid=GETFLASHW(RMFT2::SignalDefinitions+sigpos);
if (sigid==0) break; // end of signal list
doSignal(sigid & SIGNAL_ID_MASK, SIGNAL_RED);
}
for (progCounter=0;; SKIPOP){
byte opcode=GET_OPCODE;
if (opcode==OPCODE_ENDEXRAIL) break;
VPIN operand=GET_OPERAND(0);
switch (opcode) {
case OPCODE_AT:
case OPCODE_AFTER:
case OPCODE_IF:
case OPCODE_IFNOT: {
int16_t pin = (int16_t)operand;
if (pin<0) pin = -pin;
IODevice::configureInput((VPIN)pin,true);
break;
}
case OPCODE_TURNOUT: {
VPIN id=operand;
int addr=GET_OPERAND(1);
byte subAddr=GET_OPERAND(2);
setTurnoutHiddenState(DCCTurnout::create(id,addr,subAddr));
break;
}
case OPCODE_SERVOTURNOUT: {
VPIN id=operand;
VPIN pin=GET_OPERAND(1);
int activeAngle=GET_OPERAND(2);
int inactiveAngle=GET_OPERAND(3);
int profile=GET_OPERAND(4);
setTurnoutHiddenState(ServoTurnout::create(id,pin,activeAngle,inactiveAngle,profile));
break;
}
case OPCODE_PINTURNOUT: {
VPIN id=operand;
VPIN pin=GET_OPERAND(1);
setTurnoutHiddenState(VpinTurnout::create(id,pin));
break;
}
case OPCODE_ROUTE:
case OPCODE_AUTOMATION:
case OPCODE_SEQUENCE:
sequenceLookup->add(operand,progCounter);
break;
case OPCODE_ONTHROW:
onThrowLookup->add(operand,progCounter);
break;
case OPCODE_ONCLOSE:
onCloseLookup->add(operand,progCounter);
break;
case OPCODE_ONACTIVATE:
onActivateLookup->add(operand,progCounter);
break;
case OPCODE_ONDEACTIVATE:
onDeactivateLookup->add(operand,progCounter);
break;
case OPCODE_AUTOSTART:
// automatically create a task from here at startup.
new RMFT2(progCounter);
break;
default: // Ignore
break;
}
}
SKIPOP; // include ENDROUTES opcode
DIAG(F("EXRAIL %db, fl=%d seq=%d, onT=%d, onC=%d"),
progCounter,MAX_FLAGS,
sequenceCount, onThrowCount, onCloseCount);
new RMFT2(0); // add the startup route
}
void RMFT2::setTurnoutHiddenState(Turnout * t) {
t->setHidden(GETFLASH(getTurnoutDescription(t->getId()))==0x01);
}
char RMFT2::getRouteType(int16_t id) {
for (int16_t i=0;;i++) {
int16_t rid= GETFLASHW(routeIdList+i);
if (rid==id) return 'R';
if (rid==0) break;
}
for (int16_t i=0;;i++) {
int16_t rid= GETFLASHW(automationIdList+i);
if (rid==id) return 'A';
if (rid==0) break;
}
return 'X';
}
// This filter intercepts <> commands to do the following:
// - Implement RMFT specific commands/diagnostics
// - Reject/modify JMRI commands that would interfere with RMFT processing
void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]) {
(void)stream; // avoid compiler warning if we don't access this parameter
bool reject=false;
switch(opcode) {
case 'D':
if (p[0]==HASH_KEYWORD_EXRAIL) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]==HASH_KEYWORD_ON || p[1]==1);
opcode=0;
}
break;
case '/': // New EXRAIL command
reject=!parseSlash(stream,paramCount,p);
opcode=0;
break;
default: // other commands pass through
break;
}
if (reject) {
opcode=0;
StringFormatter::send(stream,F("<X>"));
}
}
bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
if (paramCount==0) { // STATUS
StringFormatter::send(stream, F("<* EXRAIL STATUS"));
RMFT2 * task=loopTask;
while(task) {
StringFormatter::send(stream,F("\nID=%d,PC=%d,LOCO=%d%c,SPEED=%d%c"),
(int)(task->taskId),task->progCounter,task->loco,
task->invert?'I':' ',
task->speedo,
task->forward?'F':'R'
);
task=task->next;
if (task==loopTask) break;
}
// Now stream the flags
for (int id=0;id<MAX_FLAGS; id++) {
byte flag=flags[id];
if (flag & ~TASK_FLAG & ~SIGNAL_MASK) { // not interested in TASK_FLAG only. Already shown above
StringFormatter::send(stream,F("\nflags[%d] "),id);
if (flag & SECTION_FLAG) StringFormatter::send(stream,F(" RESERVED"));
if (flag & LATCH_FLAG) StringFormatter::send(stream,F(" LATCHED"));
}
}
// do the signals
// flags[n] represents the state of the nth signal in the table
for (int sigslot=0;;sigslot++) {
VPIN sigid=GETFLASHW(RMFT2::SignalDefinitions+sigslot*4);
if (sigid==0) break; // end of signal list
byte flag=flags[sigslot] & SIGNAL_MASK; // obtain signal flags for this id
StringFormatter::send(stream,F("\n%S[%d]"),
(flag == SIGNAL_RED)? F("RED") : (flag==SIGNAL_GREEN) ? F("GREEN") : F("AMBER"),
sigid & SIGNAL_ID_MASK);
}
StringFormatter::send(stream,F(" *>\n"));
return true;
}
switch (p[0]) {
case HASH_KEYWORD_PAUSE: // </ PAUSE>
if (paramCount!=1) return false;
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=(RMFT2 *)1; // Impossible task address
return true;
case HASH_KEYWORD_RESUME: // </ RESUME>
if (paramCount!=1) return false;
pausingTask=NULL;
{
RMFT2 * task=loopTask;
while(task) {
if (task->loco) task->driveLoco(task->speedo);
task=task->next;
if (task==loopTask) break;
}
}
return true;
case HASH_KEYWORD_START: // </ START [cab] route >
if (paramCount<2 || paramCount>3) return false;
{
int route=(paramCount==2) ? p[1] : p[2];
uint16_t cab=(paramCount==2)? 0 : p[1];
int pc=sequenceLookup->find(route);
if (pc<0) return false;
RMFT2* task=new RMFT2(pc);
task->loco=cab;
}
return true;
default:
break;
}
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
if (p[0]==HASH_KEYWORD_KILL && p[1]==HASH_KEYWORD_ALL) {
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
return true;
}
// all other / commands take 1 parameter 0 to MAX_FLAGS-1
if (paramCount!=2 || p[1]<0 || p[1]>=MAX_FLAGS) return false;
switch (p[0]) {
case HASH_KEYWORD_KILL: // Kill taskid|ALL
{
RMFT2 * task=loopTask;
while(task) {
if (task->taskId==p[1]) {
task->kill(F("KILL"));
return true;
}
task=task->next;
if (task==loopTask) break;
}
}
return false;
case HASH_KEYWORD_RESERVE: // force reserve a section
setFlag(p[1],SECTION_FLAG);
return true;
case HASH_KEYWORD_FREE: // force free a section
setFlag(p[1],0,SECTION_FLAG);
return true;
case HASH_KEYWORD_LATCH:
setFlag(p[1], LATCH_FLAG);
return true;
case HASH_KEYWORD_UNLATCH:
setFlag(p[1], 0, LATCH_FLAG);
return true;
case HASH_KEYWORD_RED:
doSignal(p[1],SIGNAL_RED);
return true;
case HASH_KEYWORD_AMBER:
doSignal(p[1],SIGNAL_AMBER);
return true;
case HASH_KEYWORD_GREEN:
doSignal(p[1],SIGNAL_GREEN);
return true;
default:
return false;
}
}
// This emits Routes and Automations to Withrottle
// Automations are given a state to set the button to "handoff" which implies
// handing over the loco to the automation.
// Routes are given "Set" buttons and do not cause the loco to be handed over.
RMFT2::RMFT2(int progCtr) {
progCounter=progCtr;
// get an unused task id from the flags table
taskId=255; // in case of overflow
for (int f=0;f<MAX_FLAGS;f++) {
if (!getFlag(f,TASK_FLAG)) {
taskId=f;
setFlag(f, TASK_FLAG);
break;
}
}
delayTime=0;
loco=0;
speedo=0;
forward=true;
invert=false;
timeoutFlag=false;
stackDepth=0;
onTurnoutId=-1; // Not handling an ONTHROW/ONCLOSE
// chain into ring of RMFTs
if (loopTask==NULL) {
loopTask=this;
next=this;
} else {
next=loopTask->next;
loopTask->next=this;
}
}
RMFT2::~RMFT2() {
driveLoco(1); // ESTOP my loco if any
setFlag(taskId,0,TASK_FLAG); // we are no longer using this id
if (next==this)
loopTask=NULL;
else
for (RMFT2* ring=next;;ring=ring->next)
if (ring->next == this) {
ring->next=next;
loopTask=next;
break;
}
}
void RMFT2::createNewTask(int route, uint16_t cab) {
int pc=sequenceLookup->find(route);
if (pc<0) return;
RMFT2* task=new RMFT2(pc);
task->loco=cab;
}
void RMFT2::driveLoco(byte speed) {
if (loco<=0) return; // Prevent broadcast!
if (diag) DIAG(F("EXRAIL drive %d %d %d"),loco,speed,forward^invert);
if (DCCWaveform::mainTrack.getPowerMode()==POWERMODE::OFF) {
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
CommandDistributor::broadcastPower();
}
DCC::setThrottle(loco,speed, forward^invert);
speedo=speed;
}
bool RMFT2::readSensor(uint16_t sensorId) {
// Exrail operands are unsigned but we need the signed version as inserted by the macros.
int16_t sId=(int16_t) sensorId;
VPIN vpin=abs(sId);
if (getFlag(vpin,LATCH_FLAG)) return true; // latched on
// negative sensorIds invert the logic (e.g. for a break-beam sensor which goes OFF when detecting)
bool s= IODevice::read(vpin) ^ (sId<0);
if (s && diag) DIAG(F("EXRAIL Sensor %d hit"),sId);
return s;
}
// This skips to the end of an if block, or to the ELSE within it.
bool RMFT2::skipIfBlock() {
// returns false if killed
short nest = 1;
while (nest > 0) {
SKIPOP;
byte opcode = GET_OPCODE;
// all other IF type commands increase the nesting level
if (opcode>IF_TYPE_OPCODES) nest++;
else switch(opcode) {
case OPCODE_ENDEXRAIL:
kill(F("missing ENDIF"), nest);
return false;
case OPCODE_ENDIF:
nest--;
break;
case OPCODE_ELSE:
// if nest==1 then this is the ELSE for the IF we are skipping
if (nest==1) nest=0; // cause loop exit and return after ELSE
break;
default:
break;
}
}
return true;
}
/* static */ void RMFT2::readLocoCallback(int16_t cv) {
if (cv & LONG_ADDR_MARKER) { // maker bit indicates long addr
progtrackLocoId = cv ^ LONG_ADDR_MARKER; // remove marker bit to get real long addr
if (progtrackLocoId <= HIGHEST_SHORT_ADDR ) { // out of range for long addr
DIAG(F("Long addr %d <= %d unsupported\n"), progtrackLocoId, HIGHEST_SHORT_ADDR);
progtrackLocoId = -1;
}
} else {
progtrackLocoId=cv;
}
}
void RMFT2::loop() {
// Round Robin call to a RMFT task each time
if (loopTask==NULL) return;
loopTask=loopTask->next;
if (pausingTask==NULL || pausingTask==loopTask) loopTask->loop2();
}
void RMFT2::loop2() {
if (delayTime!=0 && millis()-delayStart < delayTime) return;
byte opcode = GET_OPCODE;
int16_t operand = GET_OPERAND(0);
// skipIf will get set to indicate a failing IF condition
bool skipIf=false;
// if (diag) DIAG(F("RMFT2 %d %d"),opcode,operand);
// Attention: Returning from this switch leaves the program counter unchanged.
// This is used for unfinished waits for timers or sensors.
// Breaking from this switch will step to the next step in the route.
switch ((OPCODE)opcode) {
case OPCODE_THROW:
Turnout::setClosed(operand, false);
break;
case OPCODE_CLOSE:
Turnout::setClosed(operand, true);
break;
case OPCODE_REV:
forward = false;
driveLoco(operand);
break;
case OPCODE_FWD:
forward = true;
driveLoco(operand);
break;
case OPCODE_SPEED:
driveLoco(operand);
break;
case OPCODE_FORGET:
if (loco!=0) {
DCC::forgetLoco(loco);
loco=0;
}
break;
case OPCODE_INVERT_DIRECTION:
invert= !invert;
driveLoco(speedo);
break;
case OPCODE_RESERVE:
if (getFlag(operand,SECTION_FLAG)) {
driveLoco(0);
delayMe(500);
return;
}
setFlag(operand,SECTION_FLAG);
break;
case OPCODE_FREE:
setFlag(operand,0,SECTION_FLAG);
break;
case OPCODE_AT:
timeoutFlag=false;
if (readSensor(operand)) break;
delayMe(50);
return;
case OPCODE_ATGTE: // wait for analog sensor>= value
timeoutFlag=false;
if (IODevice::readAnalogue(operand) >= (int)(GET_OPERAND(1))) break;
delayMe(50);
return;
case OPCODE_ATLT: // wait for analog sensor < value
timeoutFlag=false;
if (IODevice::readAnalogue(operand) < (int)(GET_OPERAND(1))) break;
delayMe(50);
return;
case OPCODE_ATTIMEOUT1: // ATTIMEOUT(vpin,timeout) part 1
timeoutStart=millis();
timeoutFlag=false;
break;
case OPCODE_ATTIMEOUT2:
if (readSensor(operand)) break; // success without timeout
if (millis()-timeoutStart > 100*GET_OPERAND(1)) {
timeoutFlag=true;
break; // and drop through
}
delayMe(50);
return;
case OPCODE_IFTIMEOUT: // do next operand if timeout flag set
skipIf=!timeoutFlag;
break;
case OPCODE_AFTER: // waits for sensor to hit and then remain off for 0.5 seconds. (must come after an AT operation)
if (readSensor(operand)) {
// reset timer to half a second and keep waiting
waitAfter=millis();
delayMe(50);
return;
}
if (millis()-waitAfter < 500 ) return;
break;
case OPCODE_LATCH:
setFlag(operand,LATCH_FLAG);
break;
case OPCODE_UNLATCH:
setFlag(operand,0,LATCH_FLAG);
break;
case OPCODE_SET:
IODevice::write(operand,true);
break;
case OPCODE_RESET:
IODevice::write(operand,false);
break;
case OPCODE_PAUSE:
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=this;
break;
case OPCODE_POM:
if (loco) DCC::writeCVByteMain(loco, operand, GET_OPERAND(1));
break;
case OPCODE_POWEROFF:
DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF);
DCCWaveform::progTrack.setPowerMode(POWERMODE::OFF);
DCC::setProgTrackSyncMain(false);
CommandDistributor::broadcastPower();
break;
case OPCODE_RESUME:
pausingTask=NULL;
driveLoco(speedo);
for (RMFT2 * t=next; t!=this;t=t->next) if (t->loco >0) t->driveLoco(t->speedo);
break;
case OPCODE_IF: // do next operand if sensor set
skipIf=!readSensor(operand);
break;
case OPCODE_ELSE: // skip to matching ENDIF
skipIf=true;
break;
case OPCODE_IFGTE: // do next operand if sensor>= value
skipIf=IODevice::readAnalogue(operand)<(int)(GET_OPERAND(1));
break;
case OPCODE_IFLT: // do next operand if sensor< value
skipIf=IODevice::readAnalogue(operand)>=(int)(GET_OPERAND(1));
break;
case OPCODE_IFNOT: // do next operand if sensor not set
skipIf=readSensor(operand);
break;
case OPCODE_IFRANDOM: // do block on random percentage
skipIf=(int16_t)random(100)>=operand;
break;
case OPCODE_IFRESERVE: // do block if we successfully RERSERVE
if (!getFlag(operand,SECTION_FLAG)) setFlag(operand,SECTION_FLAG);
else skipIf=true;
break;
case OPCODE_IFRED: // do block if signal as expected
skipIf=!isSignal(operand,SIGNAL_RED);
break;
case OPCODE_IFAMBER: // do block if signal as expected
skipIf=!isSignal(operand,SIGNAL_AMBER);
break;
case OPCODE_IFGREEN: // do block if signal as expected
skipIf=!isSignal(operand,SIGNAL_GREEN);
break;
case OPCODE_IFTHROWN:
skipIf=Turnout::isClosed(operand);
break;
case OPCODE_IFCLOSED:
skipIf=Turnout::isThrown(operand);
break;
case OPCODE_ENDIF:
break;
case OPCODE_DELAYMS:
delayMe(operand);
break;
case OPCODE_DELAY:
delayMe(operand*100L);
break;
case OPCODE_DELAYMINS:
delayMe(operand*60L*1000L);
break;
case OPCODE_RANDWAIT:
delayMe(random(operand)*100L);
break;
case OPCODE_RED:
doSignal(operand,SIGNAL_RED);
break;
case OPCODE_AMBER:
doSignal(operand,SIGNAL_AMBER);
break;
case OPCODE_GREEN:
doSignal(operand,SIGNAL_GREEN);
break;
case OPCODE_FON:
if (loco) DCC::setFn(loco,operand,true);
break;
case OPCODE_FOFF:
if (loco) DCC::setFn(loco,operand,false);
break;
case OPCODE_DRIVE:
{
byte analogSpeed=IODevice::readAnalogue(operand) *127 / 1024;
if (speedo!=analogSpeed) driveLoco(analogSpeed);
break;
}
case OPCODE_XFON:
DCC::setFn(operand,GET_OPERAND(1),true);
break;
case OPCODE_XFOFF:
DCC::setFn(operand,GET_OPERAND(1),false);
break;
case OPCODE_DCCACTIVATE: {
// operand is address<<3 | subaddr<<1 | active
int16_t addr=operand>>3;
int16_t subaddr=(operand>>1) & 0x03;
bool active=operand & 0x01;
DCC::setAccessory(addr,subaddr,active);
break;
}
case OPCODE_FOLLOW:
progCounter=sequenceLookup->find(operand);
if (progCounter<0) kill(F("FOLLOW unknown"), operand);
return;
case OPCODE_CALL:
if (stackDepth==MAX_STACK_DEPTH) {
kill(F("CALL stack"), stackDepth);
return;
}
callStack[stackDepth++]=progCounter+3;
progCounter=sequenceLookup->find(operand);
if (progCounter<0) kill(F("CALL unknown"),operand);
return;
case OPCODE_RETURN:
if (stackDepth==0) {
kill(F("RETURN stack"));
return;
}
progCounter=callStack[--stackDepth];
return;
case OPCODE_ENDTASK:
case OPCODE_ENDEXRAIL:
kill();
return;
case OPCODE_KILLALL:
while(loopTask) loopTask->kill(F("KILLALL"));
return;
case OPCODE_JOIN:
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
DCCWaveform::progTrack.setPowerMode(POWERMODE::ON);
DCC::setProgTrackSyncMain(true);
CommandDistributor::broadcastPower();
break;
case OPCODE_POWERON:
DCCWaveform::mainTrack.setPowerMode(POWERMODE::ON);
DCC::setProgTrackSyncMain(false);
CommandDistributor::broadcastPower();
break;
case OPCODE_UNJOIN:
DCC::setProgTrackSyncMain(false);
CommandDistributor::broadcastPower();
break;
case OPCODE_READ_LOCO1: // READ_LOCO is implemented as 2 separate opcodes
progtrackLocoId=LOCO_ID_WAITING; // Nothing found yet
DCC::getLocoId(readLocoCallback);
break;
case OPCODE_READ_LOCO2:
if (progtrackLocoId==LOCO_ID_WAITING) {
delayMe(100);
return; // still waiting for callback
}
if (progtrackLocoId<0) {
kill(F("No Loco Found"),progtrackLocoId);
return; // still waiting for callback
}
loco=progtrackLocoId;
speedo=0;
forward=true;
invert=false;
break;
case OPCODE_START:
{
int newPc=sequenceLookup->find(operand);
if (newPc<0) break;
new RMFT2(newPc);
}
break;
case OPCODE_SENDLOCO: // cab, route
{
int newPc=sequenceLookup->find(GET_OPERAND(1));
if (newPc<0) break;
RMFT2* newtask=new RMFT2(newPc); // create new task
newtask->loco=operand;
}
break;
case OPCODE_SETLOCO:
{
loco=operand;
speedo=0;
forward=true;
invert=false;
}
break;
case OPCODE_SERVO: // OPCODE_SERVO,V(vpin),OPCODE_PAD,V(position),OPCODE_PAD,V(profile),OPCODE_PAD,V(duration)
IODevice::writeAnalogue(operand,GET_OPERAND(1),GET_OPERAND(2),GET_OPERAND(3));
break;
case OPCODE_WAITFOR: // OPCODE_SERVO,V(pin)
if (IODevice::isBusy(operand)) {
delayMe(100);
return;
}
break;
case OPCODE_PRINT:
printMessage(operand);
break;
case OPCODE_ROUTE:
case OPCODE_AUTOMATION:
case OPCODE_SEQUENCE:
if (diag) DIAG(F("EXRAIL begin(%d)"),operand);
break;
case OPCODE_AUTOSTART: // Handled only during begin process
case OPCODE_PAD: // Just a padding for previous opcode needing >1 operand byte.
case OPCODE_TURNOUT: // Turnout definition ignored at runtime
case OPCODE_SERVOTURNOUT: // Turnout definition ignored at runtime
case OPCODE_PINTURNOUT: // Turnout definition ignored at runtime
case OPCODE_ONCLOSE: // Turnout event catchers ignored here
case OPCODE_ONTHROW:
case OPCODE_ONACTIVATE: // Activate event catchers ignored here
case OPCODE_ONDEACTIVATE:
break;
default:
kill(F("INVOP"),operand);
}
// Falling out of the switch means move on to the next opcode
// but if we are skipping a false IF or else
if (skipIf) if (!skipIfBlock()) return;
SKIPOP;
}
void RMFT2::delayMe(long delay) {
delayTime=delay;
delayStart=millis();
}
void RMFT2::setFlag(VPIN id,byte onMask, byte offMask) {
if (FLAGOVERFLOW(id)) return; // Outside range limit
byte f=flags[id];
f &= ~offMask;
f |= onMask;
flags[id]=f;
}
bool RMFT2::getFlag(VPIN id,byte mask) {
if (FLAGOVERFLOW(id)) return 0; // Outside range limit
return flags[id]&mask;
}
void RMFT2::kill(const FSH * reason, int operand) {
if (reason) DIAG(F("EXRAIL ERROR pc=%d, cab=%d, %S %d"), progCounter,loco, reason, operand);
else if (diag) DIAG(F("ENDTASK at pc=%d"), progCounter);
delete this;
}
int16_t RMFT2::getSignalSlot(VPIN id) {
for (int sigpos=0;;sigpos+=4) {
VPIN sigid=GETFLASHW(RMFT2::SignalDefinitions+sigpos);
if (sigid==0) { // end of signal list
DIAG(F("EXRAIL Signal %d not defined"), id);
return -1;