-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_unet_backup.py
259 lines (204 loc) · 9.2 KB
/
train_unet_backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import torch
from torch import nn
from unet.unet_transfer import UNet16, UNetResNet
from pathlib import Path
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset, random_split
import torch.nn.functional as F
from torch.autograd import Variable
import shutil
from data_loader import ImgDataSetJoint, ImgDataSet
import os
import argparse
import tqdm
import numpy as np
import scipy.ndimage as ndimage
import albumentations as albu
from albumentations.pytorch import ToTensor
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def create_model(device, type ='vgg16'):
assert type == 'vgg16' or type == 'resnet101'
if type == 'vgg16':
print('create vgg16 model')
model = UNet16(pretrained=True)
elif type == 'resnet101':
encoder_depth = 101
num_classes = 1
print('create resnet101 model')
model = UNetResNet(encoder_depth=encoder_depth, num_classes=num_classes, pretrained=True)
else:
assert False
model.eval()
return model.to(device)
def adjust_learning_rate(optimizer, epoch, lr):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def find_latest_model_path(dir):
model_paths = []
epochs = []
for path in Path(dir).glob('*.pt'):
if 'epoch' not in path.stem:
continue
model_paths.append(path)
parts = path.stem.split('_')
epoch = int(parts[-1])
epochs.append(epoch)
if len(epochs) > 0:
epochs = np.array(epochs)
max_idx = np.argmax(epochs)
return model_paths[max_idx]
else:
return None
def train(train_loader, valid_loader, model, criterion, optimizer, validation, args):
latest_model_path = find_latest_model_path(args.model_dir)
best_model_path = os.path.join(*[args.model_dir, 'model_best.pt'])
if latest_model_path is not None:
state = torch.load(latest_model_path)
epoch = state['epoch']
model.load_state_dict(state['model'])
#if latest model path does exist, best_model_path should exists as well
assert Path(best_model_path).exists() == True, f'best model path {best_model_path} does not exist'
#load the min loss so far
best_state = torch.load(latest_model_path)
min_val_los = best_state['valid_loss']
print(f'Restored model at epoch {epoch}. Min validation loss so far is : {min_val_los}')
epoch += 1
print(f'Started training model from epoch {epoch}')
else:
print('Started training model from epoch 0')
epoch = 0
min_val_los = 9999
valid_losses = []
for epoch in range(epoch, args.n_epoch + 1):
adjust_learning_rate(optimizer, epoch, args.lr)
tq = tqdm.tqdm(total=(len(train_loader) * args.batch_size))
tq.set_description(f'Epoch {epoch}')
losses = AverageMeter()
model.train()
for i, (input, target) in enumerate(train_loader):
input_var = Variable(input).cuda()
target_var = Variable(target).cuda()
masks_pred = model(input_var)
masks_pred = masks_pred.view(-1)
target_var = target_var.view(-1)
loss = criterion(masks_pred, target_var)
losses.update(loss)
tq.set_postfix(loss='{:.5f}'.format(losses.avg))
tq.update(args.batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
valid_metrics = validation(model, valid_loader, criterion)
valid_loss = valid_metrics['valid_loss']
valid_losses.append(valid_loss)
print(f'\tvalid_loss = {valid_loss:.5f}')
tq.close()
#save the model of the current epoch
epoch_model_path = os.path.join(*[args.model_dir, f'model_epoch_{epoch}.pt'])
torch.save({
'model': model.state_dict(),
'epoch': epoch,
'valid_loss': valid_loss,
'train_loss': losses.avg
}, epoch_model_path)
if valid_loss < min_val_los:
min_val_los = valid_loss
torch.save({
'model': model.state_dict(),
'epoch': epoch,
'valid_loss': valid_loss,
'train_loss': losses.avg
}, best_model_path)
def validate(model, val_loader, criterion):
losses = AverageMeter()
model.eval()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
input_var = Variable(input).cuda()
target_var = Variable(target).cuda()
output = model(input_var)
output = output.view(-1)
target_var = target_var.view(-1)
loss = criterion(output, target_var)
losses.update(loss.item(), input_var.size(0))
return {'valid_loss': losses.avg}
def save_check_point(state, is_best, file_name = 'checkpoint.pth.tar'):
torch.save(state, file_name)
if is_best:
shutil.copy(file_name, 'model_best.pth.tar')
def calc_crack_pixel_weight(mask_dir):
avg_w = 0.0
n_files = 0
for path in Path(mask_dir).glob('*.*'):
n_files += 1
m = ndimage.imread(path)
ncrack = np.sum((m > 0)[:])
w = float(ncrack)/(m.shape[0]*m.shape[1])
avg_w = avg_w + (1-w)
avg_w /= float(n_files)
return avg_w / (1.0 - avg_w)
def create_loader(dir, args):
img_dir = os.path.join(*[dir, 'images'])
mask_dir = os.path.join(*[dir, 'masks'])
img_names = sorted([path.name for path in Path(img_dir).glob('*.jpg')])
mask_names = sorted([path.name for path in Path(mask_dir).glob('*.jpg')])
#sanity checking'
assert len(img_names) == len(mask_names), 'mismatched number of image and masks'
for img_name, mask_name in zip(img_names, mask_names):
assert img_name == mask_name, 'mismatched image name vs mask name'
#join_tfms = albu.Compose([albu.VerticalFlip(), albu.HorizontalFlip(), albu.ShiftScaleRotate()])
join_tfms = albu.Compose([albu.VerticalFlip(), albu.HorizontalFlip()])
#img_tfms = albu.Compose([albu.RandomBrightnessContrast(), albu.RandomGamma(), albu.Normalize(), ToTensor()])
img_tfms = albu.Compose([albu.Normalize(), ToTensor()])
mask_tfms = albu.Compose([ToTensor()])
#dataset = ImgDataSetJoint(img_dir=img_dir, img_fnames=img_names, mask_dir=mask_dir, mask_fnames=mask_names, joint_transform=join_tfms, img_transform=img_tfms, mask_transform=mask_tfms)
dataset = ImgDataSet(img_dir=img_dir, img_fnames=img_names, mask_dir=mask_dir, mask_fnames=mask_names, img_transform=img_tfms, mask_transform=mask_tfms)
train_loader = DataLoader(dataset, args.batch_size, shuffle=True, pin_memory=torch.cuda.is_available(), num_workers=args.num_workers)
return train_loader
def main():
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-data_dir', type=str, help='input dataset directory')
parser.add_argument('-model_dir', type=str, help='output dataset directory')
parser.add_argument('-model_type', type=str, required=False, default='resnet101', help='vgg16 or resnet101')
parser.add_argument('-n_epoch', default=10, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('-lr', default=0.001, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('-momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('-print_freq', default=20, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('-weight_decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('-batch_size', default=4, type=int, help='weight decay (default: 1e-4)')
parser.add_argument('-num_workers', default=4, type=int, help='output dataset directory')
args = parser.parse_args()
os.makedirs(args.model_dir, exist_ok=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = create_model(device, args.model_type)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# crack_weight = 0.4*calc_crack_pixel_weight(DIR_MASK)
# print(f'positive weight: {crack_weight}')
# criterion = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([crack_weight]).to('cuda'))
criterion = nn.BCEWithLogitsLoss().to('cuda')
train_dir = os.path.join(*[args.data_dir, 'train'])
valid_dir = os.path.join(*[args.data_dir, 'valid'])
train_loader = create_loader(train_dir, args)
valid_loader = create_loader(valid_dir, args)
model.cuda()
train(train_loader, valid_loader, model, criterion, optimizer, validate, args)
if __name__ == '__main__':
main()