-
Notifications
You must be signed in to change notification settings - Fork 32
/
main.py
212 lines (187 loc) · 8.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
from typing import List
from tqdm import tqdm
import fire
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_int8_training,
)
from fed_utils import FedAvg, client_selection, global_evaluation, GeneralClient
import datasets
from utils.prompter import Prompter
datasets.utils.logging.set_verbosity_error()
def fl_finetune(
# model/data params
global_model: str = '',
data_path: str = './data',
output_dir: str = './lora-shepherd/',
# FL hyperparamas
client_selection_strategy: str = 'random',
client_selection_frac: float = 0.1,
num_communication_rounds: int = 50,
num_clients: int = 10,
# Local training hyperparams
local_batch_size: int = 64, # 64,
local_micro_batch_size: int = 8,
local_num_epochs: int = 10,
local_learning_rate: float = 3e-4,
local_val_set_size: int = 0,
local_save_steps: int = 3,
cutoff_len: int = 512,
# LoRA hyperparams
lora_r: int = 16,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
],
# llm hyperparams
train_on_inputs: bool = True,
group_by_length: bool = False,
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Federated Finetuning LLM-LoRA with params:\n"
f"global_model: {global_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"client_selection_strategy: {client_selection_strategy}\n"
f"client_selection_frac: {client_selection_frac}\n"
f"num_communication_rounds: {num_communication_rounds}\n"
f"num_clients: {num_clients}\n"
f"local_batch_size: {local_batch_size}\n"
f"local_micro_batch_size: {local_micro_batch_size}\n"
f"local_num_epochs: {local_num_epochs}\n"
f"local_learning_rate: {local_learning_rate}\n"
f"local_val_set_size: {local_val_set_size}\n"
f"local_save_steps: {local_save_steps}\n"
f"cutoff_len: {cutoff_len}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"group_by_length: {group_by_length}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"prompt template: {prompt_template_name}\n"
)
assert (
global_model
), "Please specify a --global_model, e.g. --global_modell='decapoda-research/llama-7b-hf'"
data_path = os.path.join(data_path, str(num_clients))
assert (os.path.exists(data_path), "Please generate the data files for each client")
# set up the global model & toknizer
gradient_accumulation_steps = local_batch_size // local_micro_batch_size
prompter = Prompter(prompt_template_name)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
model = LlamaForCausalLM.from_pretrained(
global_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,
)
tokenizer = LlamaTokenizer.from_pretrained(global_model)
tokenizer.pad_token_id = (
0
)
tokenizer.padding_side = "left"
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["context"],
data_point["response"],
)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["context"]
)
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
if not ddp and torch.cuda.device_count() > 1:
model.is_parallelizable = True
model.model_parallel = True
print("The process of federated instruction-tuning has started..")
previously_selected_clients_set = set()
last_client_id = None
local_dataset_len_dict = dict()
output_dir = os.path.join(output_dir, str(num_clients))
for epoch in tqdm(range(num_communication_rounds)):
print("\nConducting the client selection")
selected_clients_set = client_selection(num_clients, client_selection_frac, client_selection_strategy,
other_info=epoch)
for client_id in selected_clients_set:
client = GeneralClient(client_id, model, data_path, output_dir)
print("\nPreparing the local dataset and trainer for Client_{}".format(client_id))
client.preprare_local_dataset(generate_and_tokenize_prompt, local_val_set_size)
client.build_local_trainer(tokenizer,
local_micro_batch_size,
gradient_accumulation_steps,
local_num_epochs,
local_learning_rate,
group_by_length,
ddp)
print("Initiating the local training of Client_{}".format(client_id))
client.initiate_local_training()
print("Local training starts ... ")
client.train()
print("\nTerminating the local training of Client_{}".format(client_id))
model, local_dataset_len_dict, previously_selected_clients_set, last_client_id = client.terminate_local_training(
epoch, local_dataset_len_dict, previously_selected_clients_set)
del client
print("Collecting the weights of clients and performing aggregation")
model = FedAvg(model,
selected_clients_set,
output_dir,
local_dataset_len_dict,
epoch,
)
torch.save(model.state_dict(), os.path.join(output_dir, str(epoch), "adapter_model.bin"))
config.save_pretrained(output_dir)
# Please design the evaluation method based on your specific requirements in the fed_utils/evaluation.py file.
global_evaluation()
if __name__ == "__main__":
fire.Fire(fl_finetune)