-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
84 lines (67 loc) · 2.37 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Convolutional Neural Network
# Installing Theano Tensorflow Keras
# Part 1 - Building the CNN
# Importing libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import Dropout
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Convolution2D(32, (3, 3), input_shape = (256, 256, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 2.5 - ANOTHER LAYER
classifier.add(Convolution2D(64, (5, 5), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full Connection
classifier.add(Dense(activation="relu", units=128))
classifier.add(Dropout(p = 0.3))
classifier.add(Dense(activation="sigmoid", units=1))
# Compiling the CNN
classifier.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy"])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.25,
zoom_range=0.25,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory(
'dataset/training_set',
target_size=(256, 256),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory(
'dataset/test_set',
target_size=(256, 256),
batch_size=32,
class_mode='binary')
classifier.fit_generator(
training_set,
steps_per_epoch=(8000/32),
epochs=25,
validation_data=test_set,
validation_steps=(2000/32))
# Single prediction
from keras.preprocessing import image
import numpy as np
from keras.models import load_model
classifier = load_model('Nice.h5')
test_image = image.load_img('dataset/single_prediction/cat_or_dog_2.png', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
test_image = test_image/255.0
result = classifier.predict(test_image)
if result[0][0] > 0.5:
prediction = 'dog'
print ((result[0][0] - 0.5) * 200, "% dog.")
else:
prediction = 'cat'
print ((0.5 - result[0][0]) * 200, "% cat.")