-
Notifications
You must be signed in to change notification settings - Fork 0
/
kappa.m
208 lines (200 loc) · 7.13 KB
/
kappa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
function [po,k]=kappa(varargin)
% KAPPA: This function computes the Cohen's kappa coefficient.
% Cohen's kappa coefficient is a statistical measure of inter-rater
% reliability. It is generally thought to be a more robust measure than
% simple percent agreement calculation since k takes into account the
% agreement occurring by chance.
% Kappa provides a measure of the degree to which two judges, A and B,
% concur in their respective sortings of N items into k mutually exclusive
% categories. A 'judge' in this context can be an individual human being, a
% set of individuals who sort the N items collectively, or some non-human
% agency, such as a computer program or diagnostic test, that performs a
% sorting on the basis of specified criteria.
% The original and simplest version of kappa is the unweighted kappa
% coefficient introduced by J. Cohen in 1960. When the categories are
% merely nominal, Cohen's simple unweighted coefficient is the only form of
% kappa that can meaningfully be used. If the categories are ordinal and if
% it is the case that category 2 represents more of something than category
% 1, that category 3 represents more of that same something than category
% 2, and so on, then it is potentially meaningful to take this into
% account, weighting each cell of the matrix in accordance with how near it
% is to the cell in that row that includes the absolutely concordant items.
% This function can compute a linear weights or a quadratic weights.
%
% Syntax: kappa(X,W,ALPHA)
%
% Inputs:
% X - square data matrix
% W - Weight (0 = unweighted; 1 = linear weighted; 2 = quadratic
% weighted; -1 = display all. Default=0)
% ALPHA - default=0.05.
%
% Outputs:
% - Observed agreement percentage
% - Random agreement percentage
% - Agreement percentage due to true concordance
% - Residual not random agreement percentage
% - Cohen's kappa
% - kappa error
% - kappa confidence interval
% - Maximum possible kappa
% - k observed as proportion of maximum possible
% - k benchmarks by Landis and Koch
% - z test results
%
% Example:
%
% x=[88 14 18; 10 40 10; 2 6 12];
%
% Calling on Matlab the function: kappa(x)
%
% Answer is:
%
% UNWEIGHTED COHEN'S KAPPA
% --------------------------------------------------------------------------------
% Observed agreement (po) = 0.7000
% Random agreement (pe) = 0.4100
% Agreement due to true concordance (po-pe) = 0.2900
% Residual not random agreement (1-pe) = 0.5900
% Cohen's kappa = 0.4915
% kappa error = 0.0549
% kappa C.I. (alpha = 0.0500) = 0.3839 0.5992
% Maximum possible kappa, given the observed marginal frequencies = 0.8305
% k observed as proportion of maximum possible = 0.5918
% Moderate agreement
% Variance = 0.0031 z (k/sqrt(var)) = 8.8347 p = 0.0000
% Reject null hypotesis: observed agreement is not accidental
%
% Created by Giuseppe Cardillo
%
% To cite this file, this would be an appropriate format:
% Cardillo G. (2007) Cohens kappa: compute the Cohen's kappa ratio on a 2x2 matrix.
% http://www.mathworks.com/matlabcentral/fileexchange/15365
%Input Error handling
%global m f x w alpha
args=cell(varargin);
nu=numel(args);
if isempty(nu)
error('Warning: Matrix of data is missed...')
elseif nu>3
error('Warning: Max three input data are required')
end
default.values = {[],0,0.05};
default.values(1:nu) = args;
[x w alpha] = deal(default.values{:});
if isempty(x)
error('Warning: X matrix is empty...')
end
if isvector(x)
error('Warning: X must be a matrix not a vector')
end
if ~all(isfinite(x(:))) || ~all(isnumeric(x(:)))
error('Warning: all X values must be numeric and finite')
end
if ~isequal(x(:),round(x(:)))
error('Warning: X data matrix values must be whole numbers')
end
m=size(x);
if ~isequal(m(1),m(2))
error('Input matrix must be a square matrix')
end
if nu>1 %eventually check weight
if ~isscalar(w) || ~isfinite(w) || ~isnumeric(w) || isempty(w)
error('Warning: it is required a scalar, numeric and finite Weight value.')
end
a=-1:1:2;
if isempty(a(a==w))%check if w is -1 0 1 or 2
error('Warning: Weight must be -1 0 1 or 2.')
end
end
if nu>2 %eventually check alpha
if ~isscalar(alpha) || ~isnumeric(alpha) || ~isfinite(alpha) || isempty(alpha)
error('Warning: it is required a numeric, finite and scalar ALPHA value.');
end
if alpha <= 0 || alpha >= 1 %check if alpha is between 0 and 1
error('Warning: ALPHA must be comprised between 0 and 1.')
end
end
clear args default nu
m(2)=[];
tr=repmat('-',1,80);
if w==0 || w==-1
f=diag(ones(1,m)); %unweighted
disp('UNWEIGHTED COHEN''S KAPPA')
disp(tr)
[po,pe,k]=kcomp(m, f, x, alpha);
disp(' ')
end
if w==1 || w==-1
J=repmat((1:1:m),m,1);
I=flipud(rot90(J));
f=1-abs(I-J)./(m-1); %linear weight
disp('LINEAR WEIGHTED COHEN''S KAPPA')
disp(tr)
[po,pe,k]=kcomp(m, f, x, alpha);
disp(' ')
end
if w==2 || w==-1
J=repmat((1:1:m),m,1);
I=flipud(rot90(J));
f=1-((I-J)./(m-1)).^2; %quadratic weight
disp('QUADRATIC WEIGHTED COHEN''S KAPPA')
disp(tr)
[po,pe,k]=kcomp(m, f, x, alpha);
end
return
end
function [po,pe,k]=kcomp(m, f, x, alpha)
%global m f x alpha
n=sum(x(:)); %Sum of Matrix elements
x=x./n; %proportion
r=sum(x,2); %rows sum
s=sum(x); %columns sum
Ex=r*s; %expected proportion for random agree
pom=sum(min([r';s]));
po=sum(sum(x.*f));
pe=sum(sum(Ex.*f));
k=(po-pe)/(1-pe);
km=(pom-pe)/(1-pe); %maximum possible kappa, given the observed marginal frequencies
ratio=k/km; %observed as proportion of maximum possible
sek=sqrt((po*(1-po))/(n*(1-pe)^2)); %kappa standard error for confidence interval
ci=k+([-1 1].*(abs(-realsqrt(2)*erfcinv(alpha))*sek)); %k confidence interval
wbari=r'*f;
wbarj=s*f;
wbar=repmat(wbari',1,m)+repmat(wbarj,m,1);
a=Ex.*((f-wbar).^2);
var=(sum(a(:))-pe^2)/(n*((1-pe)^2)); %variance
z=k/sqrt(var); %normalized kappa
p=(1-0.5*erfc(-abs(z)/realsqrt(2)))*2;
%display results
fprintf('Observed agreement (po) = %0.4f\n',po)
fprintf('Random agreement (pe) = %0.4f\n',pe)
fprintf('Agreement due to true concordance (po-pe) = %0.4f\n',po-pe)
fprintf('Residual not random agreement (1-pe) = %0.4f\n',1-pe)
fprintf('Cohen''s kappa = %0.4f\n',k)
fprintf('kappa error = %0.4f\n',sek)
fprintf('kappa C.I. (alpha = %0.4f) = %0.4f %0.4f\n',alpha,ci)
fprintf('Maximum possible kappa, given the observed marginal frequencies = %0.4f\n',km)
fprintf('k observed as proportion of maximum possible = %0.4f\n',ratio)
if k<0
disp('Poor agreement')
elseif k>=0 && k<=0.2
disp('Slight agreement')
elseif k>=0.21 && k<=0.4
disp('Fair agreement')
elseif k>=0.41 && k<=0.6
disp('Moderate agreement')
elseif k>=0.61 && k<=0.8
disp('Substantial agreement')
elseif k>=0.81 && k<=1
disp('Perfect agreement')
end
fprintf('Variance = %0.4f z (k/sqrt(var)) = %0.4f p = %0.4f\n',var,z,p)
if p<0.05
disp('Reject null hypotesis: observed agreement is not accidental')
else
disp('Accept null hypotesis: observed agreement is accidental')
end
return
end