Skip to content

Latest commit

 

History

History
66 lines (47 loc) · 2.32 KB

README.md

File metadata and controls

66 lines (47 loc) · 2.32 KB

SimpleRSA

A simple version of RSA algorithm implementation.

No voice, but big deal.

Requirement

Write a Java or C program that demostrates RSA encryption and decryption algorithm.

  • The program should support 512, 768, 1024 and 2048 bits key size.
  • You are free to use any C++ package or Java class to handle big integers.
  • We adapt the convention that Bob is the party who will announce the public keys and Alice the one who will send Bob message encrypted with the public keys.
  • You can refer to RSA-Tool and the following interface, and you are encouraged to implement RSA-OAEP(RFC 3447 or PKCS #1 V2.1) or other special functions to demonstrate your work.
  • Please include comments in your code, the test files and the sample output.

Algorithm Analysis

RSA algorithm

  • 数据生成过程

(n,e)为公钥,(n,d)为私钥,要求n的二进制长度分别为512,768,1024和2048(bits)

step.1. 找出两个大素数p和q
step.2. 计算 n = p * q, t = (p - 1) * (q - 1)
step.3. 任取一个数e,要求满足e < t并且e与t互素
step.4. 计算d (d < t),满足d * e % t == 1
  • 加密解密过程
step.1. 将信息流分段,每段可一一映射到一个数M(M < n)
step.2. 计算 c = (M^d) % n, c作为密文发送
step.3. 计算 m = (c^e) % n, 则 m == M,从而完成对c的解密
step.4. 将m重新整合,还原信息流并显示

详细描述可以参考这里

OAEP(Optimal Asymmetric Encryption Padding,最优非对称加密填充)

在RSA加密前进行OAEP过程

M: 填充信息(m-bit),P:明文(P1 || P2)(m+k bits),C:密文(m+k bits)

r: 一次性随机数(k-bit),G(x):公共函数(k-bit to m-bit),H(x):公共函数(m-bit to k-bit)

  • 加密过程
step.1. 生成一个k-bit的随机数r
step.2. 运算生成明文 P1 = M ^ G(r)
step.3. 计算明文的第二部分 P2 = H(P1) ^ r
step.4. 合成出明文P,并用RSA加密,得密文C
  • 解密过程
step.1. 利用RSA,解密C,得明文P,并按m+k bits分段成(P1 || P2)
step.2. 作运算 H(P1) ^ P2 = H(P1) ^ (H(P1) ^ r) = r,还原出随机数r
step.3. 作运算 G(r) ^ P1 = G(r) ^ (M ^ G(r)) = M,还原出信息流,并显示

详细信息可以参考这里