-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathRMA_recognition.py
119 lines (100 loc) · 4.37 KB
/
RMA_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torch.backends.cudnn as cudnn
import torchvision
from torchvision import transforms as transforms
import numpy as np
import visdom
import torch.nn.functional as F
import PIL.Image as Image
import argparse
import os
from models.RMA_module_with_priori import RMA_module
from models.loss_with_priori import loss_function
from utils import get_target_transform as target_trans
from utils import id2label
# GPU setting
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "6")
# ==================================================================
# Constants
# ==================================================================
EPOCH = 45 # number of times for each run-through
BATCH_SIZE = 8 # number of images for each epoch
N = 512 # size of input images (512 or 640)
TOPK = 3 # top k highest-ranked labels
GPU_IN_USE = torch.cuda.is_available() # whether using GPU
PATH_MODEL_PARAMS = './params/params_with_priori.pkl'
# ==================================================================
# Parser Initialization
# ==================================================================
parser = argparse.ArgumentParser(description='Pytorch Implementation of ICCV2017_AttentionImageClass')
parser.add_argument('--testBatchSize', default=BATCH_SIZE, type=int, help='testing batch size')
parser.add_argument('--pathModelParams', default=PATH_MODEL_PARAMS, type=str, help='path of model parameters')
parser.add_argument('--loadModel', default=True, type=bool, help='load model parameters')
args = parser.parse_args()
# ==================================================================
# Transforms for the Input Images
# ==================================================================
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transforms = transforms.Compose([
transforms.Resize((N, N)),
transforms.ToTensor(),
normalize
])
class RMA_model(object):
# 构造函数里加载模型,比如 tensorflow 的 graph, sess 等
def __init__(self):
# prepare model
print('\n***** Prepare Model *****')
vgg16 = torchvision.models.vgg16(pretrained=True)
self.extract_features = vgg16.features
self.RMA = RMA_module(lstm_input_size=14, lstm_hidden_size=4096, zk_size=4096)
if args.loadModel:
self.RMA.load_state_dict(torch.load(args.pathModelParams))
if GPU_IN_USE:
print('CUDA_VISIBLE_DEVICES:', os.environ['CUDA_VISIBLE_DEVICES'])
print('cuda: move all model parameters and buffers to the GPU')
self.extract_features.cuda()
self.RMA.cuda()
cudnn.benchmark = True
print('Model Preparation : Finished')
# Test
def evaluate(self, data):
print('evaluate:')
self.RMA.eval() # set the module in evaluation mode
print('before transforms')
data = transforms(data).unsqueeze(0)
if GPU_IN_USE:
data = data.cuda() # set up GPU Tensor
print('before extracting features')
f_I = self.extract_features(data)
output, _ = self.RMA(f_I)
print('after RMA')
prediction = torch.topk(F.softmax(output, dim=1), 10, dim=1)
filter = prediction[0].eq(0.1) + prediction[0].gt(0.1)
category_id = torch.mul(prediction[1]+1, filter.type(torch.cuda.LongTensor))
print(prediction[0])
#print(category_id)
return id2label(category_id)[0].tolist()
# 需要对外提供一个 API,可以直接拿到你们的结果
def image_recognition(self, image_path):
# 业务逻辑
print('image path: ', image_path)
image = Image.open(image_path)
if not image.mode == 'RGB':
image = image.convert('RGB')
with torch.no_grad():
label = self.evaluate(image)
print(label)
return dict(
data = label
)
def __del__(self):
print("delete!")
# 生成模型实例
# 这里生成模型实例供 server 导入并调用
print("生成 RMA Model 实例.................")
RMA_model_instance = RMA_model()
print("RMA Model 实例生成完成...............")