forked from kerlomz/captcha_trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
257 lines (208 loc) · 9.51 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <[email protected]>
import os
import platform
import re
import yaml
from character import *
from constants import *
from exception import exception, ConfigException
# Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
# If you have a GPU, you shouldn't care about AVX support.
# Just disables the warning, doesn't enable AVX/FMA
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
PROJECT_PATH = "."
IGNORE_FILES = ['.DS_Store']
NETWORK_MAP = {
'CNN5': CNNNetwork.CNN5,
'ResNet': CNNNetwork.ResNet,
'DenseNet': CNNNetwork.DenseNet,
'LSTM': RecurrentNetwork.LSTM,
'BLSTM': RecurrentNetwork.BLSTM,
'SRU': RecurrentNetwork.SRU,
'BSRU': RecurrentNetwork.BSRU,
'GRU': RecurrentNetwork.GRU,
}
OPTIMIZER_MAP = {
'AdaBound': Optimizer.AdaBound,
'Adam': Optimizer.Adam,
'Momentum': Optimizer.Momentum,
'SGD': Optimizer.SGD,
'AdaGrad': Optimizer.AdaGrad,
'RMSProp': Optimizer.RMSProp
}
PLATFORM = platform.system()
# SYS_CONFIG_DEMO_NAME = 'config_demo.yaml'
MODEL_CONFIG_DEMO_NAME = 'model_demo.yaml'
# SYS_CONFIG_NAME = 'config.yaml'
MODEL_CONFIG_NAME = 'model.yaml'
MODEL_PATH = os.path.join(PROJECT_PATH, 'model')
OUTPUT_PATH = os.path.join(PROJECT_PATH, 'out')
TFRECORDS_DIR = os.path.join(PROJECT_PATH, 'dataset')
PATH_SPLIT = "\\" if PLATFORM == "Windows" else "/"
# SYS_CONFIG_PATH = os.path.join(PROJECT_PATH, SYS_CONFIG_NAME)
# SYS_CONFIG_PATH = SYS_CONFIG_PATH if os.path.exists(SYS_CONFIG_PATH) else os.path.join("../", SYS_CONFIG_NAME)
MODEL_CONFIG_PATH = os.path.join(PROJECT_PATH, MODEL_CONFIG_NAME)
MODEL_CONFIG_PATH = MODEL_CONFIG_PATH if os.path.exists(MODEL_CONFIG_PATH) else os.path.join("../", MODEL_CONFIG_NAME)
# with open(SYS_CONFIG_PATH, 'r', encoding="utf-8") as sys_fp:
# sys_stream = sys_fp.read()
# cf_system = yaml.load(sys_stream, Loader=yaml.SafeLoader)
with open(MODEL_CONFIG_PATH, 'r', encoding="utf-8") as sys_fp:
sys_stream = sys_fp.read()
cf_model = yaml.load(sys_stream, Loader=yaml.SafeLoader)
def char_set(_type):
if isinstance(_type, list):
return _type
if isinstance(_type, str):
return SIMPLE_CHAR_SET.get(_type) if _type in SIMPLE_CHAR_SET.keys() else ConfigException.CHAR_SET_NOT_EXIST
exception(
"Character set configuration error, customized character set should be list type",
ConfigException.CHAR_SET_INCORRECT
)
"""CHARSET"""
CHAR_SET = cf_model['Model'].get('CharSet')
CHAR_EXCLUDE = cf_model['Model'].get('CharExclude')
GEN_CHAR_SET = [i for i in char_set(CHAR_SET) if i not in CHAR_EXCLUDE]
GEN_CHAR_SET = [''] + GEN_CHAR_SET
# fixed Not enough time for target transition sequence
# GEN_CHAR_SET = SPACE_TOKEN + GEN_CHAR_SET
CHAR_REPLACE = cf_model['Model'].get('CharReplace')
CHAR_REPLACE = CHAR_REPLACE if CHAR_REPLACE else {}
CHAR_SET_LEN = len(GEN_CHAR_SET)
CASE_SENSITIVE = cf_model['Model'].get('CaseSensitive')
CASE_SENSITIVE = CASE_SENSITIVE if CASE_SENSITIVE is not None else True
"""MODEL"""
# NEU_NETWORK = cf_system['NeuralNet']
TARGET_MODEL = cf_model['Model'].get('ModelName')
IMAGE_HEIGHT = cf_model['Model'].get('ImageHeight')
IMAGE_WIDTH = cf_model['Model'].get('ImageWidth')
IMAGE_CHANNEL = cf_model['Model'].get('ImageChannel')
IMAGE_CHANNEL = IMAGE_CHANNEL if IMAGE_CHANNEL else 1
MULTI_SHAPE = False
"""NEURAL NETWORK"""
NEU_CNN = cf_model['NeuralNet'].get('CNNNetwork')
NEU_CNN = NEU_CNN if NEU_CNN else 'CNN5'
NEU_RECURRENT = cf_model['NeuralNet'].get('RecurrentNetwork')
NEU_RECURRENT = NEU_RECURRENT if NEU_RECURRENT else 'BLSTM'
NUM_HIDDEN = cf_model['NeuralNet'].get('HiddenNum')
OUTPUT_KEEP_PROB = cf_model['NeuralNet'].get('KeepProb')
LSTM_LAYER_NUM = 2
NEU_OPTIMIZER = cf_model['NeuralNet'].get('Optimizer')
NEU_OPTIMIZER = NEU_OPTIMIZER if NEU_OPTIMIZER else 'AdaBound'
PREPROCESS_COLLAPSE_REPEATED = cf_model['NeuralNet'].get('PreprocessCollapseRepeated')
PREPROCESS_COLLAPSE_REPEATED = PREPROCESS_COLLAPSE_REPEATED if PREPROCESS_COLLAPSE_REPEATED is not None else False
CTC_MERGE_REPEATED = cf_model['NeuralNet'].get('CTCMergeRepeated')
CTC_MERGE_REPEATED = CTC_MERGE_REPEATED if CTC_MERGE_REPEATED is not None else True
CTC_BEAM_WIDTH = cf_model['NeuralNet'].get('CTCBeamWidth')
CTC_BEAM_WIDTH = CTC_BEAM_WIDTH if CTC_BEAM_WIDTH is not None else 1
CTC_TOP_PATHS = cf_model['NeuralNet'].get('CTCTopPaths')
CTC_TOP_PATHS = CTC_TOP_PATHS if CTC_TOP_PATHS is not None else 1
CTC_LOSS_TIME_MAJOR = True
WARP_CTC = cf_model['NeuralNet'].get('WarpCTC')
WARP_CTC = WARP_CTC if WARP_CTC is not None else False
LEAKINESS = 0.01
NUM_CLASSES = CHAR_SET_LEN + 2
MODEL_TAG = '{}.model'.format(TARGET_MODEL)
CHECKPOINT_TAG = 'checkpoint'
SAVE_MODEL = os.path.join(MODEL_PATH, MODEL_TAG)
SAVE_CHECKPOINT = os.path.join(MODEL_PATH, CHECKPOINT_TAG)
"""SYSTEM"""
GPU_USAGE = cf_model['System'].get('DeviceUsage')
"""PATH & LABEL"""
TRAIN_PATH_IN_MODEL = cf_model.get('Trains')
TRAINS_PATH = cf_model['Trains'].get('TrainsPath')
TEST_PATH = cf_model['Trains'].get('TestPath')
DATASET_PATH = cf_model['Trains'].get('DatasetPath')
TRAINS_REGEX = cf_model['Trains'].get('TrainRegex')
TRAINS_REGEX = TRAINS_REGEX if TRAINS_REGEX else ".*?(?=_)"
TEST_REGEX = cf_model['Trains'].get('TestRegex')
TEST_REGEX = TEST_REGEX if TEST_REGEX else (TRAINS_REGEX if TRAINS_REGEX else ".*?(?=_)")
TEST_SET_NUM = cf_model['Trains'].get('TestSetNum')
TEST_SET_NUM = TEST_SET_NUM if TEST_SET_NUM else 1000
HAS_TEST_SET = TEST_PATH and (os.path.exists(TEST_PATH) if isinstance(TEST_PATH, str) else True)
SPLIT_DATASET = not TEST_PATH
TEST_USE_TFRECORDS = isinstance(TEST_PATH, str) and TEST_PATH.endswith("tfrecords")
TRAINS_USE_TFRECORDS = isinstance(TRAINS_PATH, str) and TRAINS_PATH.endswith("tfrecords")
"""TRAINS"""
TRAINS_SAVE_STEPS = cf_model['Trains'].get('SavedSteps')
TRAINS_VALIDATION_STEPS = cf_model['Trains'].get('ValidationSteps')
TRAINS_END_ACC = cf_model['Trains'].get('EndAcc')
TRAINS_END_COST = cf_model['Trains'].get('EndCost')
TRAINS_END_COST = TRAINS_END_COST if TRAINS_END_COST else 1
TRAINS_END_EPOCHS = cf_model['Trains'].get('EndEpochs')
TRAINS_LEARNING_RATE = cf_model['Trains'].get('LearningRate')
DECAY_RATE = cf_model['Trains'].get('DecayRate')
DECAY_RATE = DECAY_RATE if DECAY_RATE else 0.98
DECAY_STEPS = cf_model['Trains'].get('DecaySteps')
DECAY_STEPS = DECAY_STEPS if DECAY_STEPS else 10000
BATCH_SIZE = cf_model['Trains'].get('BatchSize')
BATCH_SIZE = BATCH_SIZE if BATCH_SIZE else 64
TEST_BATCH_SIZE = cf_model['Trains'].get('TestBatchSize')
TEST_BATCH_SIZE = TEST_BATCH_SIZE if TEST_BATCH_SIZE else 300
MOMENTUM = 0.9
"""PRETREATMENT"""
BINARYZATION = cf_model['Pretreatment'].get('Binaryzation')
SMOOTH = cf_model['Pretreatment'].get('Smoothing')
BLUR = cf_model['Pretreatment'].get('Blur')
REPLACE_TRANSPARENT = cf_model['Pretreatment'].get('ReplaceTransparent')
RESIZE = cf_model['Pretreatment'].get('Resize')
RESIZE = RESIZE if RESIZE else [IMAGE_WIDTH, IMAGE_HEIGHT]
"""COMPILE_MODEL"""
COMPILE_MODEL_PATH = os.path.join(OUTPUT_PATH, '{}.pb'.format(TARGET_MODEL))
QUANTIZED_MODEL_PATH = os.path.join(MODEL_PATH, 'quantized_{}.pb'.format(TARGET_MODEL))
def _checkpoint(_name, _path):
file_list = os.listdir(_path)
checkpoint = ['"{}"'.format(i.split(".meta")[0]) for i in file_list if
_name + ".model" in i and i.endswith('.meta')]
if not checkpoint:
return None
_checkpoint_step = [int(re.search('(?<=model-).*?(?=")', i).group()) for i in checkpoint]
return checkpoint[_checkpoint_step.index(max(_checkpoint_step))]
def init():
if not os.path.exists(MODEL_PATH):
os.makedirs(MODEL_PATH)
if not os.path.exists(OUTPUT_PATH):
os.makedirs(OUTPUT_PATH)
# if not os.path.exists(SYS_CONFIG_PATH):
# exception(
# 'Configuration File "{}" No Found. '
# 'If it is used for the first time, please copy one from {} as {}'.format(
# SYS_CONFIG_NAME,
# SYS_CONFIG_DEMO_NAME,
# SYS_CONFIG_NAME
# ), ConfigException.SYS_CONFIG_PATH_NOT_EXIST
# )
if not os.path.exists(MODEL_CONFIG_PATH):
exception(
'Configuration File "{}" No Found. '
'If it is used for the first time, please copy one from {} as {}'.format(
MODEL_CONFIG_NAME,
MODEL_CONFIG_DEMO_NAME,
MODEL_CONFIG_NAME
), ConfigException.MODEL_CONFIG_PATH_NOT_EXIST
)
if not isinstance(CHAR_EXCLUDE, list):
exception("\"CharExclude\" should be a list")
if GEN_CHAR_SET == ConfigException.CHAR_SET_NOT_EXIST:
exception(
"The character set type does not exist, there is no character set named {}".format(CHAR_SET),
ConfigException.CHAR_SET_NOT_EXIST
)
model_file = _checkpoint(TARGET_MODEL, MODEL_PATH)
checkpoint = 'model_checkpoint_path: {}\nall_model_checkpoint_paths: {}'.format(model_file, model_file)
with open(SAVE_CHECKPOINT, 'w') as f:
f.write(checkpoint)
if '../' not in MODEL_CONFIG_PATH:
print('Loading Configuration...')
print('---------------------------------------------------------------------------------')
print("PROJECT_PATH", PROJECT_PATH)
print('MODEL_PATH:', SAVE_MODEL)
print('COMPILE_MODEL_PATH:', COMPILE_MODEL_PATH)
print('CHAR_SET_LEN:', CHAR_SET_LEN)
print('CHAR_REPLACE: {}'.format(CHAR_REPLACE))
print('IMAGE_WIDTH: {}, IMAGE_HEIGHT: {}'.format(
IMAGE_WIDTH, IMAGE_HEIGHT)
)
print('NEURAL NETWORK: {}'.format(cf_model['NeuralNet']))
print('---------------------------------------------------------------------------------')