forked from idrblab/PFmulDL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_model.py
330 lines (292 loc) · 11.6 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from sklearn.metrics import auc
from tensorflow.keras.utils import Sequence, plot_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, CSVLogger, TensorBoard
import matplotlib.pyplot as plt
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import (
Input, Dense, Embedding, Conv1D, Flatten, Concatenate, TimeDistributed,
MaxPooling1D, Dropout, RepeatVector, Layer, Reshape, SimpleRNN, LSTM, BatchNormalization, GRU
)
import tensorflow as tf
import numpy as np
import pandas as pd
import math
import pickle
from sklearn.metrics import roc_curve, auc, matthews_corrcoef, precision_score, recall_score, roc_auc_score,f1_score
from collections import deque, Counter
from tqdm import tqdm
import pickle as pkl
AAINDEX = {'A': 1, 'R': 2, 'N': 3, 'D': 4, 'C': 5, 'Q': 6, 'E': 7, 'G': 8, 'H': 9, 'I': 10, 'L': 11,
'K': 12, 'M': 13, 'F': 14, 'P': 15, 'S': 16, 'T': 17, 'W': 18, 'Y': 19, 'V': 20}
MAXLEN = 2000
def to_onehot(seq, start=0):
onehot = np.zeros((MAXLEN, 21), dtype=np.int32)
l = min(MAXLEN, len(seq))
for i in range(start, start + l):
onehot[i, AAINDEX.get(seq[i - start], 0)] = 1
onehot[0:start, 0] = 1
onehot[start + l:, 0] = 1
return onehot
class Ontology(object):
def __init__(self, filename='data/go.obo', with_rels=False):
self.ont = self.load(filename, with_rels)
self.ic = None
def has_term(self, term_id):
return term_id in self.ont
def get_term(self, term_id):
if self.has_term(term_id):
return self.ont[term_id]
return None
def get_anchestors(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
q = deque()
q.append(term_id)
while (len(q) > 0):
t_id = q.popleft()
if t_id not in term_set:
term_set.add(t_id)
for parent_id in self.ont[t_id]['is_a']:
if parent_id in self.ont:
q.append(parent_id)
return term_set
def get_parents(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
for parent_id in self.ont[term_id]['is_a']:
if parent_id in self.ont:
term_set.add(parent_id)
return term_set
def get_namespace_terms(self, namespace):
terms = set()
for go_id, obj in self.ont.items():
if obj['namespace'] == namespace:
terms.add(go_id)
return terms
def get_namespace(self, term_id):
return self.ont[term_id]['namespace']
def get_term_set(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
q = deque()
q.append(term_id)
while len(q) > 0:
t_id = q.popleft()
if t_id not in term_set:
term_set.add(t_id)
for ch_id in self.ont[t_id]['children']:
q.append(ch_id)
return term_set
class DFGenerator(Sequence):
def __init__(self, df, terms_dict, nb_classes, batch_size):
self.start = 0
self.size = len(df)
self.df = df
self.batch_size = batch_size
self.nb_classes = nb_classes
self.terms_dict = terms_dict
def __len__(self):
return np.ceil(len(self.df) / float(self.batch_size)).astype(np.int32)
def __getitem__(self, idx):
batch_index = np.arange(idx * self.batch_size, min(self.size, (idx + 1) * self.batch_size))
df = self.df.iloc[batch_index]
data_onehot = np.zeros((len(df), MAXLEN, 21), dtype=np.float32)
labels = np.zeros((len(df), self.nb_classes), dtype=np.int32)
for i, row in enumerate(df.itertuples()):
seq = row.sequences
onehot = to_onehot(seq)
data_onehot[i, :, :] = onehot
for t_id in row.prop_annotations:
if t_id in self.terms_dict:
labels[i, self.terms_dict[t_id]] = 1
self.start += self.batch_size
return (data_onehot, labels)
def __next__(self):
return self.next()
def reset(self):
self.start = 0
def next(self):
if self.start < self.size:
batch_index = np.arange(
self.start, min(self.size, self.start + self.batch_size))
df = self.df.iloc[batch_index]
data_onehot = np.zeros((len(df), MAXLEN, 21), dtype=np.int32)
labels = np.zeros((len(df), self.nb_classes), dtype=np.int32)
for i, row in enumerate(df.itertuples()):
seq = row.sequences
onehot = to_onehot(seq)
data_onehot[i, :, :] = onehot
for t_id in row.prop_annotations:
if t_id in self.terms_dict:
labels[i, self.terms_dict[t_id]] = 1
self.start += self.batch_size
return (data_onehot, labels)
else:
self.reset()
return self.next()
def load_weight(model_path1, model_path2):
model = load_model(model_path1)
loaded_model = load_model(model_path2)
old_weights = loaded_model.get_weights()
now_weights = model.get_weights()
cnt = 0
for i in range(len(now_weights)):
if old_weights[cnt].shape == now_weights[i].shape:
now_weights[i] = old_weights[cnt]
cnt = cnt + 1
print(f'{cnt} layers weights copied, total {len(now_weights)}')
model.set_weights(now_weights)
model.save(model_path1)
def plot_curve(history):
plt.figure()
x_range = range(0, len(history.history['loss']))
plt.plot(x_range, history.history['loss'], 'bo', label='Training loss')
plt.plot(x_range, history.history['val_loss'], 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
def init_evaluate(data_size, batch_size, model_file, data_path, term_path):
with open(term_path, 'rb') as file:
terms_df = pd.read_pickle(file)
with open(data_path, 'rb') as file:
data_df = pd.read_pickle(file)
if len(data_df) > data_size:
data_df = data_df.sample(n=data_size)
# data_df = data_df.loc[data_df["cafa_target"] == "True"]
# print(data_df)
model = load_model(f'model/{model_file}.h5')
data_file = data_path.split('/')[-1].split('.')[0]
terms = terms_df['terms'].values.flatten()
terms_dict = {v: i for i, v in enumerate(terms)}
nb_classes = len(terms)
labels = np.zeros((len(data_df), nb_classes), dtype=np.int32)
for i, row in enumerate(data_df.itertuples()):
for go_id in row.prop_annotations:
if go_id in terms_dict:
labels[i, terms_dict[go_id]] = 1
print('predict……')
data_generator = DFGenerator(data_df, terms_dict, nb_classes, batch_size)
data_steps = int(math.ceil(len(data_df) / batch_size))
preds = model.predict(data_generator, steps=data_steps)
return terms, labels, preds, data_file
def fmeasure(real_annots, pred_annots):
cnt = 0
precision = 0.0
recall = 0.0
p_total = 0
for i in range(len(real_annots)):
if len(real_annots[i]) == 0:
continue
tp = set(real_annots[i]).intersection(set(pred_annots[i]))
fp = pred_annots[i] - tp
fn = real_annots[i] - tp
tpn = len(tp)
fpn = len(fp)
fnn = len(fn)
cnt += 1
recall += tpn / (1.0 * (tpn + fnn))
if len(pred_annots[i]) > 0:
p_total += 1
precision_x = tpn / (1.0 * (tpn + fpn))
precision += precision_x
recall /= cnt
if p_total > 0:
precision /= p_total
fscore = 0.0
if precision + recall > 0:
fscore = 2 * precision * recall / (precision + recall)
return fscore, precision, recall
def evaluate_annotations(labels_np, preds_np, terms):
fmax = 0.0
tmax = 0.0
precisions = []
recalls = []
labels = list(map(lambda x: set(terms[x == 1]), labels_np))
for t in range(1, 101):
threshold = t / 100.0
preds = preds_np.copy()
preds[preds >= threshold] = 1
preds[preds != 1] = 0
# fscore, pr, rc = fmeasure(labels, prop_annotations(preds, terms))
fscore, pr, rc = fmeasure(labels, list(map(lambda x: set(terms[x == 1]), preds)))
precisions.append(pr)
recalls.append(rc)
if fmax < fscore:
fmax = fscore
tmax = t
preds = preds_np.copy()
preds[preds >= tmax / 100.0] = 1
preds[preds != 1] = 0
mcc = matthews_corrcoef(labels_np.flatten(), preds.flatten())
precisions = np.array(precisions)
recalls = np.array(recalls)
sorted_index = np.argsort(recalls)
recalls = recalls[sorted_index]
precisions = precisions[sorted_index]
return fmax, tmax, recalls, precisions, mcc
def evaluate(model_file, data_path, data_size=8000, batch_size=16, term_path='data/terms.pkl'):
ont = ['GO:0003674', 'GO:0008150', 'GO:0005575']
namespace = ['molecular_function', 'biological_process', 'cellular_component', 'all']
terms, labels, preds, data_file = init_evaluate(data_size, batch_size, model_file, data_path, term_path)
with open("data/go.pkl", 'rb') as file:
go = pkl.loads(file.read())
plt.figure(1, figsize=(16, 3))
evaluate_info = f'{model_file}, {data_file}:\n'
for i in range(4):
print(f'evaluate {namespace[i]}……')
if i == 3:
chose = np.ones(len(terms), dtype=bool)
else:
go_set = go.get_namespace_terms(namespace[i])
go_set.remove(ont[i])
chose = list(map(lambda x: x in go_set, terms))
_terms = terms[chose]
_labels = labels[:, chose]
_preds = preds[:, chose]
roc_auc = roc_auc_score(_labels.flatten(), _preds.flatten())
# AUPR = aupr(_labels.flatten(), _preds.flatten())
fmax, alpha, recalls, precisions, mcc = evaluate_annotations(_labels, _preds, _terms)
AUPR = auc(recalls, precisions)
plt.subplot(1, 4, i + 1)
plt.plot(recalls, precisions, color='darkorange', lw=1, label=f'AUPR={AUPR:0.3f}')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title(f'P-R curve of {namespace[i]}')
plt.legend(loc="lower right")
evaluate_info += f'\t{namespace[i]}, {len(_terms)}: fmax={fmax:0.3f}, mcc={mcc:0.3f}, AUPR = {AUPR:0.3f}, roc_auc={roc_auc:0.3f}, precision={precisions[alpha]:0.3f}, recall={recalls[alpha]:0.3f}, threshold={alpha}\n'
plt.savefig('result.png')
aucli = []
fs = []
with open(term_path, 'rb') as file:
terms_df = pd.read_pickle(file)
tags = terms_df['tag']
for i in range(1, 10):
tag_select = tags == i
_terms = terms[tag_select]
_labels = labels[:, tag_select]
_preds = preds[:, tag_select]
aucli.append(roc_auc_score(_labels.flatten(), _preds.flatten()))
res = evaluate_annotations(_labels, _preds, _terms)
fs.append(res[0])
plt.figure()
plt.plot(range(1, len(aucli) + 1), aucli, lw=1, label=f'STD of auc={np.std(aucli):0.5f}')
plt.savefig("crnn.png")
# plt.plot(range(1,len(fs)+1), fs, lw=1, color='orange', label=f'STD of fmax={np.std(fs):0.5f}')
plt.xlabel('Depth')
plt.legend(loc="lower right")
plt.ylim([0.0, 1.0])
plt.show()
# evaluate_info += f'\tauc_std={np.std(aucli):0.5f}, fmax_std={np.std(fs):0.5f}\n'
evaluate_info += f'\tauc_std={np.std(aucli):0.5f}\n'
print(aucli)
print(fs)
print(evaluate_info)
# with open("logfile.json", "a") as file:
# file.write(evaluate_info)