forked from ctralie/TDALabs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSyntheticCurves.py
121 lines (110 loc) · 3.73 KB
/
SyntheticCurves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#Programmer: Chris Tralie
#Purpose: To create a collection of functions for making random curves and applying
#random rotations/translations/deformations/reparameterizations to existing curves
#to test out the Morse matching algorithm
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as interp
from skimage.draw import line
import scipy.misc
import scipy.signal
def makeRandomWalkCurve(res, NPoints, dim):
#Enumerate all neighbors in hypercube via base 3 counting between [-1, 0, 1]
Neighbs = np.zeros((3**dim, dim))
Neighbs[0, :] = -np.ones((1, dim))
idx = 1
for ii in range(1, 3**dim):
N = np.copy(Neighbs[idx-1, :])
N[0] += 1
for kk in range(dim):
if N[kk] > 1:
N[kk] = -1
N[kk+1] += 1
Neighbs[idx, :] = N
idx += 1
#Exclude the neighbor that's in the same place
Neighbs = Neighbs[np.sum(np.abs(Neighbs), 1) > 0, :]
#Pick a random starting point
X = np.zeros((NPoints, dim))
X[0, :] = np.random.choice(res, dim)
#Trace out a random path
for ii in range(1, NPoints):
prev = np.copy(X[ii-1, :])
N = np.tile(prev, (Neighbs.shape[0], 1)) + Neighbs
#Pick a random next point that is in bounds
idx = np.sum(N > 0, 1) + np.sum(N < res, 1)
N = N[idx == 2*dim, :]
X[ii, :] = N[np.random.choice(N.shape[0], 1), :]
return X
def applyRandomRigidTransformation(X):
dim = X.shape[1]
CM = np.mean(X, 0)
X = X - CM
#Make a random rotation matrix
R = np.random.randn(dim, dim)
R, S, V = np.linalg.svd(R)
T = np.std(X)*np.random.randn(1, dim)
return CM + np.dot(X, R) + np.tile(T, (X.shape[0], 1))
def smoothCurve(X, Fac):
NPoints = X.shape[0]
dim = X.shape[1]
idx = range(NPoints)
idxx = np.linspace(0, NPoints, NPoints*Fac)
Y = np.zeros((NPoints*Fac, dim))
NPointsOut = 0
for ii in range(dim):
Y[:, ii] = interp.spline(idx, X[:, ii], idxx)
#Smooth with box filter
y = (0.5/Fac)*np.convolve(Y[:, ii], np.ones(Fac*2), mode='same')
Y[0:len(y), ii] = y
NPointsOut = len(y)
Y = Y[0:NPointsOut-1, :]
Y = Y[2*Fac:-2*Fac, :]
return Y
def getRandomMotionBlurMask(extent):
X = makeRandomWalkCurve(40, 20, 2)
Y = smoothCurve(X, 20)
Y = Y - np.mean(Y, 0)[None, :]
Y = Y/np.max(Y, 0)
Y = Y*extent
theta = np.random.rand()*2*np.pi
Y[:, 0] = Y[:, 0] + np.cos(theta)*np.linspace(0, extent, Y.shape[0])
Y[:, 1] = Y[:, 1] + np.sin(theta)*np.linspace(0, extent, Y.shape[0])
D = np.sum(Y**2, 1)[:, None]
D = D + D.T - 2*Y.dot(Y.T)
D[D < 0] = 0
D = 0.5*(D + D.T)
D = np.sqrt(D)
Y = Y*extent/np.max(D)
Y = Y - np.mean(Y, 0)[None, :]
Y = Y - np.min(Y)
I = np.zeros((extent, extent))
for i in range(Y.shape[0]-1):
c = [Y[i, 0], Y[i, 1], Y[i+1, 0], Y[i+1, 1]]
c = [int(np.round(cc)) for cc in c]
rr, cc = line(c[0], c[1], c[2], c[3])
rr = [min(max(rrr, 0), extent-1) for rrr in rr]
cc = [min(max(ccc, 0), extent-1) for ccc in cc]
I[rr, cc] += 1.0
I = I/np.sum(I)
return (Y, I)
if __name__ == "__main__":
#np.random.seed(100)
(Y, mask) = getRandomMotionBlurMask(20)
# plt.subplot(1, 2, 1)
# plt.scatter(Y[:, 0], Y[:, 1], 10, 'b')
# plt.plot(Y[:, 0], Y[:, 1], 'r')
#
# plt.subplot(1, 2, 2)
# plt.imshow(I, interpolation = 'none')
I = scipy.misc.imread("image.jpg")
IBlur = 0*I
for k in range(I.shape[2]):
IBlur[:, :, k] = scipy.signal.convolve2d(I[:, :, k], mask, 'same')
plt.subplot(131)
plt.imshow(mask, interpolation = 'none')
plt.subplot(132)
plt.imshow(I)
plt.subplot(133)
plt.imshow(IBlur)
plt.show()