forked from ctralie/TDALabs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MusicFeatures.py
105 lines (93 loc) · 3.12 KB
/
MusicFeatures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
Programmer: Chris Tralie ([email protected])
Purpose: Code to compute features on audio files, including
audio novelty
"""
import numpy as np
import numpy.linalg as linalg
import scipy
from scipy.io import wavfile
from scipy.io import savemat
from scipy.fftpack import dct
import matplotlib.pyplot as plt
def Specgram(X, W, H):
"""A function to compute the spectrogram of a signal
:parm X: N x 1 Audio Signal
:param W: Window Size
:param H HopSize
:returns: S, an N x NBins spectrogram array
"""
Q = W/H
if Q - np.floor(Q) > 0:
print('Warning: Window size is not integer multiple of hop size\n')
win = np.hamming(W)
NWin = int(np.floor((len(X) - W)/float(H)) + 1)
S = np.zeros((NWin, W))
for i in range(NWin):
x = X[i*H:i*H+W]
S[i, :] = np.abs(np.fft.fft(win*x))
#Second half of the spectrum is redundant for real signals
if W % 2 == 0:
#Even Case
S = S[:, 0:int(W/2)]
else:
#Odd Case
S = S[:, 0:int((W-1)/2)+1]
return S
def getMelFilterbank( Fs, winSize, nbands, minfreq, maxfreq ):
#Purpose: Return a mel-spaced triangle filterbank
#Step 1: Warp to the mel-frequency scale
melbounds = np.array([minfreq, maxfreq])
melbounds = 1125*np.log(1 + melbounds/700.0)
mel = np.linspace(melbounds[0], melbounds[1], nbands)
binfreqs = 700*(np.exp(mel/1125.0) - 1)
binbins = np.ceil(((winSize-1)/float(Fs))*binfreqs) #Ceil to the nearest bin
binbins = np.array(binbins, dtype = np.int64)
#Step 2: Create mel triangular filterbank
melfbank = np.zeros((nbands, winSize))
for i in range(nbands):
thisbin = binbins[i]
lbin = thisbin
if i > 0:
lbin = binbins[i-1]
rbin = thisbin + (thisbin - lbin)
if i < nbands-1:
rbin = binbins[i+1]
melfbank[i, lbin:thisbin+1] = np.linspace(0, 1, 1 + (thisbin - lbin))
melfbank[i, thisbin:rbin+1] = np.linspace(1, 0, 1 + (rbin - thisbin))
return melfbank
def getAudioNoveltyFn(x, Fs, winSize, hopSize):
"""
Using techniques from
Ellis, Daniel PW. "Beat tracking by dynamic programming."
Journal of New Music Research 36.1 (2007): 51-60.
"""
#First compute mel-spaced STFT
S = Specgram(x, winSize, hopSize)
S = np.abs(S)
M = getMelFilterbank(Fs, winSize, 40, 30, 8000)
M = M[:, 0:S.shape[1]]
X = M.dot(S.T)
novFn = X[:, 1::] - X[:, 0:-1]
novFn[novFn < 0] = 0
novFn = np.sum(novFn, 0)
return (S, novFn)
if __name__ == '__main__':
Fs, X = scipy.io.wavfile.read("journey.wav")
X = X/(2.0**15) #Audio is loaded in as 16 bit shorts. Convert to float
winSize = 512
hopSize = 256
(S, novFn) = getAudioNoveltyFn(X, Fs, winSize, hopSize)
nsamples = 500
novFn = novFn[0:nsamples]
t = np.arange(nsamples)*hopSize/float(Fs)
plt.subplot(211)
plt.imshow(np.log(S.T), cmap = 'afmhot', aspect = 'auto')
plt.title("Spectrogram")
plt.axis('off')
plt.subplot(212)
plt.plot(t, novFn)
plt.title("Audio Novelty Function")
plt.xlabel("Time (Sec)")
plt.xlim([0, np.max(t)])
plt.show()