forked from ctralie/TDALabs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DiffusionMaps.py
executable file
·113 lines (101 loc) · 3.64 KB
/
DiffusionMaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA
import scipy.io as sio
from scipy import sparse
import time
from GeomUtils import getSSM, getW
def getDiffusionMap(SSM, Kappa, t = -1, includeDiag = True, thresh = 5e-4, NEigs = 51):
"""
:param SSM: Metric between all pairs of points
:param Kappa: Number in (0, 1) indicating a fraction of nearest neighbors
used to autotune neighborhood size
:param t: Diffusion parameter. If -1, do Autotuning
:param includeDiag: If true, include recurrence to diagonal in the markov
chain. If false, zero out diagonal
:param thresh: Threshold below which to zero out entries in markov chain in
the sparse approximation
:param NEigs: The number of eigenvectors to use in the approximation
"""
N = SSM.shape[0]
#Use the letters from the delaPorte paper
K = getW(SSM, int(Kappa*N))
if not includeDiag:
np.fill_diagonal(K, np.zeros(N))
RowSumSqrt = np.sqrt(np.sum(K, 1))
DInvSqrt = sparse.diags([1/RowSumSqrt], [0])
#Symmetric normalized Laplacian
Pp = (K/RowSumSqrt[None, :])/RowSumSqrt[:, None]
Pp[Pp < thresh] = 0
Pp = sparse.csr_matrix(Pp)
lam, X = sparse.linalg.eigsh(Pp, NEigs, which='LM')
lam = lam/lam[-1] #In case of numerical instability
#Check to see if autotuning
if t > -1:
lamt = lam**t
else:
#Autotuning diffusion time
lamt = np.array(lam)
lamt[0:-1] = lam[0:-1]/(1-lam[0:-1])
#Do eigenvector version
V = DInvSqrt.dot(X) #Right eigenvectors
M = V*lamt[None, :]
return M/RowSumSqrt[:, None] #Put back into orthogonal Euclidean coordinates
def getPinchedCircle(N):
t = np.linspace(0, 2*np.pi, N+1)[0:N]
x = np.zeros((N, 2))
x[:, 0] = (1.5 + np.cos(2*t))*np.cos(t)
x[:, 1] = (1.5 + np.cos(2*t))*np.sin(t)
return x
def getTorusKnot(N, p, q):
t = np.linspace(0, 2*np.pi, N+1)[0:N]
X = np.zeros((N, 3))
r = np.cos(q*t) + 2
X[:, 0] = r*np.cos(p*t)
X[:, 1] = r*np.sin(p*t)
X[:, 2] = -np.sin(q*t)
return X
if __name__ == '__main__':
zeroReturn = True
N = 400
X = getPinchedCircle(N)
sio.savemat("X.mat", {"X":X})
tic = time.time()
SSMOrig = getSSM(X)
toc = time.time()
print("Elapsed time SSM: ", toc - tic)
Kappa = 0.1
plt.figure(figsize=(12, 5))
plt.subplot(121)
plt.scatter(X[:, 0], X[:, 1], 40, np.arange(N), cmap = 'Spectral', edgecolor = 'none')
plt.axis('equal')
ax = plt.gca()
ax.set_xticks([])
ax.set_yticks([])
ax.set_axis_bgcolor((0.15, 0.15, 0.15))
plt.title("Original Pinched Circle")
plt.subplot(122)
plt.imshow(SSMOrig, interpolation = 'nearest', cmap = 'afmhot')
plt.title("Original SSM")
plt.savefig("Diffusion0.svg", bbox_inches = 'tight')
ts = [100]
for t in ts:
plt.clf()
M = getDiffusionMap(SSMOrig, Kappa, t)
SSM = getSSM(M)
plt.subplot(121)
X = M[:, [-2, -3]]
plt.scatter(X[:, 0], X[:, 1], 40, np.arange(N), cmap = 'Spectral', edgecolor = 'none')
plt.title("2D Diffusion Map, t = %i, $\kappa = %g$"%(t, Kappa))
plt.axis('equal')
plt.xlim([np.min(X[:, 0]) - 0.001, np.max(X[:, 0]) + 0.001])
plt.ylim([np.min(X[:, 1]) - 0.001, np.max(X[:, 1]) + 0.001])
ax = plt.gca()
ax.set_xticks([])
ax.set_yticks([])
ax.set_axis_bgcolor((0.15, 0.15, 0.15))
plt.subplot(122)
plt.imshow(SSM, interpolation = 'nearest', cmap = 'afmhot')
plt.title("Diffusion Distance")
plt.savefig("Diffusion%i.svg"%t, bbox_inches = 'tight')