-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathusage_example0.py
29 lines (24 loc) · 1.15 KB
/
usage_example0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# %%
from deepspt_src import *
# path to example data - see usage_example1 for how to generate simulated data
dim = 3
path = '_Data/Simulated_diffusion_tracks/' # path to save and load
output_name = 'tester_set'+str(dim) # name of output file - change to get new tracks if already run
print(path+output_name)
# load array of tracks saved as pickle
tracks_arr = pickle.load(open(path+output_name+'.pkl', 'rb'))
# load csv file and convert to tracks
df = read_data_csv(path+output_name+'.csv', useful_col=['x', 'y', 'z', 'particle', 'frame'])
tmp1 = Parallel(n_jobs=3)(
delayed(
prep_csv_tracks_track)(
val, identifiername='particle',
timename='frame', xname='x',
yname='y', zname='z', center=False
) for val in dict(tuple(df.groupby('particle'))).values())
tracks_csv = np.array([r[0] for r in tmp1], dtype=object)
track_frames = np.array([r[1] for r in tmp1], dtype=object)
track_idx = np.array([np.unique(r[2]) for r in tmp1])
# assert equal for sanity
for i in range(len(tracks_csv)):
assert np.all(tracks_csv[i][:, 0] == df[df['particle'] == i]['x'].values, )