forked from mindspore-lab/mindcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
121 lines (102 loc) · 3.49 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import mindspore as ms
import mindspore.nn as nn
from mindspore import Model
from mindcv.data import create_dataset, create_loader, create_transforms
from mindcv.loss import create_loss
from mindcv.models import create_model
from mindcv.utils import ValCallback
from config import parse_args # isort: skip
def check_batch_size(num_samples, ori_batch_size=32, refine=True):
if num_samples % ori_batch_size == 0:
return ori_batch_size
else:
# search a batch size that is divisible by num samples.
for bs in range(ori_batch_size - 1, 0, -1):
if num_samples % bs == 0:
print(
f"WARNING: num eval samples {num_samples} can not be divided by "
f"the input batch size {ori_batch_size}. The batch size is refined to {bs}"
)
return bs
return 1
def validate(args):
ms.set_context(device_target=args.device_target)
ms.set_context(mode=args.mode)
if args.mode == ms.GRAPH_MODE:
ms.set_context(jit_config={"jit_level": "O2"})
# create dataset
dataset_eval = create_dataset(
name=args.dataset,
root=args.data_dir,
split=args.val_split,
num_parallel_workers=args.num_parallel_workers,
download=args.dataset_download,
shuffle=args.eval_shuffle,
)
# create transform
transform_list = create_transforms(
dataset_name=args.dataset,
is_training=False,
image_resize=args.image_resize,
crop_pct=args.crop_pct,
interpolation=args.interpolation,
mean=args.mean,
std=args.std,
)
# read num clases
num_classes = dataset_eval.num_classes() if args.num_classes is None else args.num_classes
# check batch size
batch_size = check_batch_size(dataset_eval.get_dataset_size(), args.batch_size)
# load dataset
loader_eval = create_loader(
dataset=dataset_eval,
batch_size=batch_size,
drop_remainder=False,
is_training=False,
transform=transform_list,
num_parallel_workers=args.num_parallel_workers,
)
# create model
network = create_model(
model_name=args.model,
num_classes=num_classes,
drop_rate=args.drop_rate,
drop_path_rate=args.drop_path_rate,
pretrained=args.pretrained,
checkpoint_path=args.ckpt_path,
ema=args.ema,
)
network.set_train(False)
ms.amp.auto_mixed_precision(network, amp_level=args.val_amp_level)
# create loss
loss = create_loss(
name=args.loss,
reduction=args.reduction,
label_smoothing=args.label_smoothing,
aux_factor=args.aux_factor,
)
# Define eval metrics.
if num_classes >= 5:
eval_metrics = {
"Top_1_Accuracy": nn.Top1CategoricalAccuracy(),
"Top_5_Accuracy": nn.Top5CategoricalAccuracy(),
"loss": nn.metrics.Loss(),
}
else:
eval_metrics = {
"Top_1_Accuracy": nn.Top1CategoricalAccuracy(),
"loss": nn.metrics.Loss(),
}
# init model
model = Model(network, loss_fn=loss, metrics=eval_metrics)
# log
num_batches = loader_eval.get_dataset_size()
print(f"Model: {args.model}")
print(f"Num batches: {num_batches}")
print("Start validating...")
# validate
result = model.eval(loader_eval, dataset_sink_mode=False, callbacks=[ValCallback(args.log_interval)])
print(result)
if __name__ == "__main__":
args = parse_args()
validate(args)