forked from mindspore-lab/mindcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
423 lines (327 loc) · 14.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import itertools as it
import json
import math
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import mindspore.nn as nn
from mindspore import Tensor
class GridAnchorGenerator:
"""
Anchor Generator
"""
def __init__(self, image_shape, scale, scales_per_octave, aspect_ratios):
super(GridAnchorGenerator, self).__init__()
self.scale = scale
self.scales_per_octave = scales_per_octave
self.aspect_ratios = aspect_ratios
self.image_shape = image_shape
def generate(self, step):
scales = np.array(
[2 ** (float(scale) / self.scales_per_octave) for scale in range(self.scales_per_octave)]
).astype(np.float32)
aspects = np.array(list(self.aspect_ratios)).astype(np.float32)
scales_grid, aspect_ratios_grid = np.meshgrid(scales, aspects)
scales_grid = scales_grid.reshape([-1])
aspect_ratios_grid = aspect_ratios_grid.reshape([-1])
feature_size = [self.image_shape[0] / step, self.image_shape[1] / step]
grid_height, grid_width = feature_size
base_size = np.array([self.scale * step, self.scale * step]).astype(np.float32)
anchor_offset = step / 2.0
ratio_sqrt = np.sqrt(aspect_ratios_grid)
heights = scales_grid / ratio_sqrt * base_size[0]
widths = scales_grid * ratio_sqrt * base_size[1]
y_centers = np.arange(grid_height).astype(np.float32)
y_centers = y_centers * step + anchor_offset
x_centers = np.arange(grid_width).astype(np.float32)
x_centers = x_centers * step + anchor_offset
x_centers, y_centers = np.meshgrid(x_centers, y_centers)
x_centers_shape = x_centers.shape
y_centers_shape = y_centers.shape
widths_grid, x_centers_grid = np.meshgrid(widths, x_centers.reshape([-1]))
heights_grid, y_centers_grid = np.meshgrid(heights, y_centers.reshape([-1]))
x_centers_grid = x_centers_grid.reshape(*x_centers_shape, -1)
y_centers_grid = y_centers_grid.reshape(*y_centers_shape, -1)
widths_grid = widths_grid.reshape(-1, *x_centers_shape)
heights_grid = heights_grid.reshape(-1, *y_centers_shape)
bbox_centers = np.stack([y_centers_grid, x_centers_grid], axis=3)
bbox_sizes = np.stack([heights_grid, widths_grid], axis=3)
bbox_centers = bbox_centers.reshape([-1, 2])
bbox_sizes = bbox_sizes.reshape([-1, 2])
bbox_corners = np.concatenate([bbox_centers - 0.5 * bbox_sizes, bbox_centers + 0.5 * bbox_sizes], axis=1)
self.bbox_corners = bbox_corners / np.array([*self.image_shape, *self.image_shape]).astype(np.float32)
self.bbox_centers = np.concatenate([bbox_centers, bbox_sizes], axis=1)
self.bbox_centers = self.bbox_centers / np.array([*self.image_shape, *self.image_shape]).astype(np.float32)
return self.bbox_centers, self.bbox_corners
def generate_multi_levels(self, steps):
bbox_centers_list = []
bbox_corners_list = []
for step in steps:
bbox_centers, bbox_corners = self.generate(step)
bbox_centers_list.append(bbox_centers)
bbox_corners_list.append(bbox_corners)
self.bbox_centers = np.concatenate(bbox_centers_list, axis=0)
self.bbox_corners = np.concatenate(bbox_corners_list, axis=0)
return self.bbox_centers, self.bbox_corners
class GeneratDefaultBoxes:
"""
Generate Default boxes for SSD, follows the order of (W, H, archor_sizes).
`self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [y, x, h, w].
`self.default_boxes_tlbr` has a shape as `self.default_boxes`, the last dimension is [y1, x1, y2, x2].
"""
def __init__(self, args):
fk = args.image_size[0] / np.array(args.steps)
scale_rate = (args.max_scale - args.min_scale) / (len(args.num_default) - 1)
scales = [args.min_scale + scale_rate * i for i in range(len(args.num_default))] + [1.0]
self.default_boxes = []
for idex, feature_size in enumerate(args.feature_size):
sk1 = scales[idex]
sk2 = scales[idex + 1]
sk3 = math.sqrt(sk1 * sk2)
if idex == 0 and not args.aspect_ratios[idex]:
w, h = sk1 * math.sqrt(2), sk1 / math.sqrt(2)
all_sizes = [(0.1, 0.1), (w, h), (h, w)]
else:
all_sizes = [(sk1, sk1)]
for aspect_ratio in args.aspect_ratios[idex]:
w, h = sk1 * math.sqrt(aspect_ratio), sk1 / math.sqrt(aspect_ratio)
all_sizes.append((w, h))
all_sizes.append((h, w))
all_sizes.append((sk3, sk3))
assert len(all_sizes) == args.num_default[idex]
for i, j in it.product(range(feature_size), repeat=2):
for w, h in all_sizes:
cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex]
self.default_boxes.append([cy, cx, h, w])
def to_tlbr(cy, cx, h, w):
return cy - h / 2, cx - w / 2, cy + h / 2, cx + w / 2
# For IoU calculation
self.default_boxes_tlbr = np.array(tuple(to_tlbr(*i) for i in self.default_boxes), dtype="float32")
self.default_boxes = np.array(self.default_boxes, dtype="float32")
def ssd_bboxes_encode(boxes, args):
"""
Labels anchors with ground truth inputs.
Args:
boxex: ground truth with shape [N, 5], for each row, it stores [y, x, h, w, cls].
Returns:
gt_loc: location ground truth with shape [num_anchors, 4].
gt_label: class ground truth with shape [num_anchors, 1].
num_matched_boxes: number of positives in an image.
"""
if hasattr(args, "use_anchor_generator") and args.use_anchor_generator:
generator = GridAnchorGenerator(args.image_size, 4, 2, [1.0, 2.0, 0.5])
default_boxes, default_boxes_tlbr = generator.generate_multi_levels(args.steps)
else:
generator = GeneratDefaultBoxes(args)
default_boxes_tlbr = generator.default_boxes_tlbr
default_boxes = generator.default_boxes
y1, x1, y2, x2 = np.split(default_boxes_tlbr[:, :4], 4, axis=-1)
vol_anchors = (x2 - x1) * (y2 - y1)
def jaccard_with_anchors(bbox):
"""Compute jaccard score a box and the anchors."""
# Intersection bbox and volume.
ymin = np.maximum(y1, bbox[0])
xmin = np.maximum(x1, bbox[1])
ymax = np.minimum(y2, bbox[2])
xmax = np.minimum(x2, bbox[3])
w = np.maximum(xmax - xmin, 0.0)
h = np.maximum(ymax - ymin, 0.0)
# Volumes.
inter_vol = h * w
union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol
jaccard = inter_vol / union_vol
return np.squeeze(jaccard)
pre_scores = np.zeros((args.num_ssd_boxes), dtype=np.float32)
t_boxes = np.zeros((args.num_ssd_boxes, 4), dtype=np.float32)
t_label = np.zeros((args.num_ssd_boxes), dtype=np.int64)
for bbox in boxes:
label = int(bbox[4])
scores = jaccard_with_anchors(bbox)
idx = np.argmax(scores)
scores[idx] = 2.0
mask = scores > args.match_threshold
mask = mask & (scores > pre_scores)
pre_scores = np.maximum(pre_scores, scores * mask)
t_label = mask * label + (1 - mask) * t_label
for i in range(4):
t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i]
index = np.nonzero(t_label)
# Transform to tlbr.
bboxes = np.zeros((args.num_ssd_boxes, 4), dtype=np.float32)
bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2
bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]]
# Encode features.
bboxes_t = bboxes[index]
default_boxes_t = default_boxes[index]
bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * args.prior_scaling[0])
tmp = np.maximum(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4], 0.000001)
bboxes_t[:, 2:4] = np.log(tmp) / args.prior_scaling[1]
bboxes[index] = bboxes_t
num_match = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32)
return bboxes, t_label.astype(np.int32), num_match
def ssd_bboxes_decode(boxes, args):
"""Decode predict boxes to [y, x, h, w]"""
if hasattr(args, "use_anchor_generator") and args.use_anchor_generator:
generator = GridAnchorGenerator(args.image_size, 4, 2, [1.0, 2.0, 0.5])
default_boxes, _ = generator.generate_multi_levels(args.steps)
else:
default_boxes = GeneratDefaultBoxes(args).default_boxes
boxes_t = boxes.copy()
# default_boxes_t = default_boxes.copy()
boxes_t[:, :2] = boxes_t[:, :2] * args.prior_scaling[0] * default_boxes[:, 2:] + default_boxes[:, :2]
boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * args.prior_scaling[1]) * default_boxes[:, 2:4]
bboxes = np.zeros((len(boxes_t), 4), dtype=np.float32)
bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2
bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2
return np.clip(bboxes, 0, 1)
def intersect(box_a, box_b):
"""Compute the intersect of two sets of boxes."""
max_yx = np.minimum(box_a[:, 2:4], box_b[2:4])
min_yx = np.maximum(box_a[:, :2], box_b[:2])
inter = np.clip((max_yx - min_yx), a_min=0, a_max=np.inf)
return inter[:, 0] * inter[:, 1]
def jaccard_numpy(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes."""
inter = intersect(box_a, box_b)
area_a = (box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])
area_b = (box_b[2] - box_b[0]) * (box_b[3] - box_b[1])
union = area_a + area_b - inter
return inter / union
def get_ssd_lr_scheduler(args, steps_per_epoch):
"""
generate learning rate array for training
"""
lr_init = args.lr_init
lr_end = args.lr_end_rate * args.lr
lr_max = args.lr
warmup_epochs = args.warmup_epochs
total_epochs = args.epoch_size
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
warmup_steps = steps_per_epoch * warmup_epochs
for i in range(total_steps):
if i < warmup_steps:
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
else:
lr = (
lr_end
+ (lr_max - lr_end)
* (1.0 + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps)))
/ 2.0
)
if lr < 0.0:
lr = 0.0
lr_each_step.append(lr)
learning_rate = np.array(lr_each_step).astype(np.float32)
return learning_rate
def get_ssd_optimizer(model, lr, args):
optimizer = nn.Momentum(
filter(lambda x: x.requires_grad, model.get_parameters()), lr, args.momentum, args.weight_decay, args.loss_scale
)
return optimizer
def apply_nms(all_boxes, all_scores, thres, max_boxes):
"""Apply NMS to bboxes."""
y1 = all_boxes[:, 0]
x1 = all_boxes[:, 1]
y2 = all_boxes[:, 2]
x2 = all_boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = all_scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
if len(keep) >= max_boxes:
break
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thres)[0]
order = order[inds + 1]
return keep
class COCOMetrics:
"""Calculate mAP of predicted bboxes."""
def __init__(self, anno_json, classes, num_classes, min_score, nms_threshold, max_boxes):
self.num_classes = num_classes
self.classes = classes
self.min_score = min_score
self.nms_threshold = nms_threshold
self.max_boxes = max_boxes
self.val_cls_dict = {i: cls for i, cls in enumerate(classes)}
self.coco_gt = COCO(anno_json)
cat_ids = self.coco_gt.loadCats(self.coco_gt.getCatIds())
self.class_dict = {cat["name"]: cat["id"] for cat in cat_ids}
self.predictions = []
self.img_ids = []
def update(self, batch):
pred_boxes = batch["boxes"]
box_scores = batch["box_scores"]
img_id = batch["img_id"]
h, w = batch["image_shape"]
final_boxes = []
final_label = []
final_score = []
self.img_ids.append(img_id)
for c in range(1, self.num_classes):
class_box_scores = box_scores[:, c]
score_mask = class_box_scores > self.min_score
class_box_scores = class_box_scores[score_mask]
class_boxes = pred_boxes[score_mask] * [h, w, h, w]
if score_mask.any():
nms_index = apply_nms(class_boxes, class_box_scores, self.nms_threshold, self.max_boxes)
class_boxes = class_boxes[nms_index]
class_box_scores = class_box_scores[nms_index]
final_boxes += class_boxes.tolist()
final_score += class_box_scores.tolist()
final_label += [self.class_dict[self.val_cls_dict[c]]] * len(class_box_scores)
for loc, label, score in zip(final_boxes, final_label, final_score):
res = {}
res["image_id"] = img_id
res["bbox"] = [loc[1], loc[0], loc[3] - loc[1], loc[2] - loc[0]]
res["score"] = score
res["category_id"] = label
self.predictions.append(res)
def get_metrics(self):
with open("predictions.json", "w") as f:
json.dump(self.predictions, f)
coco_dt = self.coco_gt.loadRes("predictions.json")
E = COCOeval(self.coco_gt, coco_dt, iouType="bbox")
E.params.imgIds = self.img_ids
E.evaluate()
E.accumulate()
E.summarize()
return E.stats[0]
def apply_eval(eval_param_dict):
net = eval_param_dict["net"]
net.set_train(False)
ds = eval_param_dict["dataset"]
anno_json = eval_param_dict["anno_json"]
args = eval_param_dict["args"]
coco_metrics = COCOMetrics(
anno_json=anno_json,
classes=args.classes,
num_classes=args.num_classes,
max_boxes=args.max_boxes,
nms_threshold=args.nms_threshold,
min_score=args.min_score,
)
for data in ds.create_dict_iterator(output_numpy=True, num_epochs=1):
img_id = data["img_id"]
img_np = data["image"]
image_shape = data["image_shape"]
output = net(Tensor(img_np))
for batch_idx in range(img_np.shape[0]):
pred_batch = {
"boxes": output[0].asnumpy()[batch_idx],
"box_scores": output[1].asnumpy()[batch_idx],
"img_id": int(np.squeeze(img_id[batch_idx])),
"image_shape": image_shape[batch_idx],
}
coco_metrics.update(pred_batch)
eval_metrics = coco_metrics.get_metrics()
return eval_metrics