GoogLeNet is a new deep learning structure proposed by Christian Szegedy in 2014. Prior to this, AlexNet, VGG and other structures achieved better training effects by increasing the depth (number of layers) of the network, but the increase in the number of layers It will bring many negative effects, such as overfit, gradient disappearance, gradient explosion, etc. The proposal of inception improves the training results from another perspective: it can use computing resources more efficiently, and can extract more features under the same amount of computing, thereby improving the training results.[1]
Figure 1. Architecture of GoogLeNet [1]
Our reproduced model performance on ImageNet-1K is reported as follows.
performance tested on ascend 910*(8p) with graph mode
Model | Top-1 (%) | Top-5 (%) | ms/step | Params (M) | Batch Size | Recipe | Download |
---|---|---|---|---|---|---|---|
googlenet | 72.89 | 90.89 | 24.29 | 6.99 | 32 | yaml | weights |
performance tested on ascend 910(8p) with graph mode
Model | Top-1 (%) | Top-5 (%) | Params (M) | Batch Size | Recipe | Download |
---|---|---|---|---|---|---|
googlenet | 72.68 | 90.89 | 6.99 | 32 | yaml | weights |
- Context: Training context denoted as {device}x{pieces}-{MS mode}, where mindspore mode can be G - graph mode or F - pynative mode with ms function. For example, D910x8-G is for training on 8 pieces of Ascend 910 NPU using graph mode.
- Top-1 and Top-5: Accuracy reported on the validation set of ImageNet-1K.
Please refer to the installation instruction in MindCV.
Please download the ImageNet-1K dataset for model training and validation.
- Distributed Training
It is easy to reproduce the reported results with the pre-defined training recipe. For distributed training on multiple Ascend 910 devices, please run
# distributed training on multiple GPU/Ascend devices
msrun --bind_core=True --worker_num 8 python train.py --config configs/googlenet/googlenet_ascend.yaml --data_dir /path/to/imagenet
Similarly, you can train the model on multiple GPU devices with the above msrun
command.
For detailed illustration of all hyper-parameters, please refer to config.py.
Note: As the global batch size (batch_size x num_devices) is an important hyper-parameter, it is recommended to keep the global batch size unchanged for reproduction or adjust the learning rate linearly to a new global batch size.
- Standalone Training
If you want to train or finetune the model on a smaller dataset without distributed training, please run:
# standalone training on a CPU/GPU/Ascend device
python train.py --config configs/googlenet/googlenet_ascend.yaml --data_dir /path/to/dataset --distribute False
To validate the accuracy of the trained model, you can use validate.py
and parse the checkpoint path with --ckpt_path
.
python validate.py -c configs/googlenet/googlenet_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt
Please refer to the deployment tutorial in MindCV.
[1] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.