-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathfool.py
157 lines (140 loc) · 6.99 KB
/
fool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# coding: utf-8
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import argparse
import os
import numpy as np
from read_files import split_imdb_files, split_yahoo_files, split_agnews_files
from word_level_process import word_process, get_tokenizer
from char_level_process import char_process
from neural_networks import word_cnn, char_cnn, bd_lstm, lstm
from adversarial_tools import ForwardGradWrapper, adversarial_paraphrase
import tensorflow as tf
from keras import backend as K
import time
from unbuffered import Unbuffered
sys.stdout = Unbuffered(sys.stdout)
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
K.set_session(tf.Session(config=config))
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
parser = argparse.ArgumentParser(
description='Craft adversarial examples for a text classifier.')
parser.add_argument('--clean_samples_cap',
help='Amount of clean(test) samples to fool',
type=int, default=1000)
parser.add_argument('-m', '--model',
help='The model of text classifier',
choices=['word_cnn', 'char_cnn', 'word_lstm', 'word_bdlstm'],
default='word_cnn')
parser.add_argument('-d', '--dataset',
help='Data set',
choices=['imdb', 'agnews', 'yahoo'],
default='imdb')
parser.add_argument('-l', '--level',
help='The level of process dataset',
choices=['word', 'char'],
default='word')
def write_origin_input_texts(origin_input_texts_path, test_texts, test_samples_cap=None):
if test_samples_cap is None:
test_samples_cap = len(test_texts)
with open(origin_input_texts_path, 'a') as f:
for i in range(test_samples_cap):
f.write(test_texts[i] + '\n')
def fool_text_classifier():
clean_samples_cap = args.clean_samples_cap # 1000
print('clean_samples_cap:', clean_samples_cap)
# get tokenizer
dataset = args.dataset
tokenizer = get_tokenizer(dataset)
# Read data set
x_test = y_test = None
test_texts = None
if dataset == 'imdb':
train_texts, train_labels, test_texts, test_labels = split_imdb_files()
if args.level == 'word':
x_train, y_train, x_test, y_test = word_process(train_texts, train_labels, test_texts, test_labels, dataset)
elif args.level == 'char':
x_train, y_train, x_test, y_test = char_process(train_texts, train_labels, test_texts, test_labels, dataset)
elif dataset == 'agnews':
train_texts, train_labels, test_texts, test_labels = split_agnews_files()
if args.level == 'word':
x_train, y_train, x_test, y_test = word_process(train_texts, train_labels, test_texts, test_labels, dataset)
elif args.level == 'char':
x_train, y_train, x_test, y_test = char_process(train_texts, train_labels, test_texts, test_labels, dataset)
elif dataset == 'yahoo':
train_texts, train_labels, test_texts, test_labels = split_yahoo_files()
if args.level == 'word':
x_train, y_train, x_test, y_test = word_process(train_texts, train_labels, test_texts, test_labels, dataset)
elif args.level == 'char':
x_train, y_train, x_test, y_test = char_process(train_texts, train_labels, test_texts, test_labels, dataset)
# Write clean examples into a txt file
clean_texts_path = r'./fool_result/{}/clean_{}.txt'.format(dataset, str(clean_samples_cap))
if not os.path.isfile(clean_texts_path):
write_origin_input_texts(clean_texts_path, test_texts)
# Select the model and load the trained weights
assert args.model[:4] == args.level
model = None
if args.model == "word_cnn":
model = word_cnn(dataset)
elif args.model == "word_bdlstm":
model = bd_lstm(dataset)
elif args.model == "char_cnn":
model = char_cnn(dataset)
elif args.model == "word_lstm":
model = lstm(dataset)
model_path = r'./runs/{}/{}.dat'.format(dataset, args.model)
model.load_weights(model_path)
print('model path:', model_path)
# evaluate classification accuracy of model on clean samples
scores_origin = model.evaluate(x_test[:clean_samples_cap], y_test[:clean_samples_cap])
print('clean samples origin test_loss: %f, accuracy: %f' % (scores_origin[0], scores_origin[1]))
all_scores_origin = model.evaluate(x_test, y_test)
print('all origin test_loss: %f, accuracy: %f' % (all_scores_origin[0], all_scores_origin[1]))
grad_guide = ForwardGradWrapper(model)
classes_prediction = grad_guide.predict_classes(x_test[: clean_samples_cap])
print('Crafting adversarial examples...')
successful_perturbations = 0
failed_perturbations = 0
sub_rate_list = []
NE_rate_list = []
start_cpu = time.clock()
adv_text_path = r'./fool_result/{}/{}/adv_{}.txt'.format(dataset, args.model, str(clean_samples_cap))
change_tuple_path = r'./fool_result/{}/{}/change_tuple_{}.txt'.format(dataset, args.model, str(clean_samples_cap))
file_1 = open(adv_text_path, "a")
file_2 = open(change_tuple_path, "a")
for index, text in enumerate(test_texts[: clean_samples_cap]):
sub_rate = 0
NE_rate = 0
if np.argmax(y_test[index]) == classes_prediction[index]:
# If the ground_true label is the same as the predicted label
adv_doc, adv_y, sub_rate, NE_rate, change_tuple_list = adversarial_paraphrase(input_text=text,
true_y=np.argmax(y_test[index]),
grad_guide=grad_guide,
tokenizer=tokenizer,
dataset=dataset,
level=args.level)
if adv_y != np.argmax(y_test[index]):
successful_perturbations += 1
print('{}. Successful example crafted.'.format(index))
else:
failed_perturbations += 1
print('{}. Failure.'.format(index))
text = adv_doc
sub_rate_list.append(sub_rate)
NE_rate_list.append(NE_rate)
file_2.write(str(index) + str(change_tuple_list) + '\n')
file_1.write(text + " sub_rate: " + str(sub_rate) + "; NE_rate: " + str(NE_rate) + "\n")
end_cpu = time.clock()
print('CPU second:', end_cpu - start_cpu)
mean_sub_rate = sum(sub_rate_list) / len(sub_rate_list)
mean_NE_rate = sum(NE_rate_list) / len(NE_rate_list)
print('mean substitution rate:', mean_sub_rate)
print('mean NE rate:', mean_NE_rate)
file_1.close()
file_2.close()
if __name__ == '__main__':
args = parser.parse_args()
fool_text_classifier()