We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好,我对DSDG中测试代码(FaceX-Zoo/addition_module/DSDG/DUM/test.py)有点疑问,请问测试中计算score的时候,有用到norm的操作(score_norm = torch.sum(mu) / torch.sum(test_maps[:, frame_t, :, :])),针对这个我有两个疑惑: 1、假如是一个fake的样本,torch.sum(test_maps[:, frame_t, :, :]应该等于0?那是否需要加一个偏置项来避免除0的情况发生? 2、假如网络训练的很好的话,mu和test_maps[:, frame_t, :, :]应近似相等?那不论是对real还是fake的样本,score_norm应该都近似为1吧?怎么在计算指标的时候对他们进行区分呢
The text was updated successfully, but these errors were encountered:
No branches or pull requests
你好,我对DSDG中测试代码(FaceX-Zoo/addition_module/DSDG/DUM/test.py)有点疑问,请问测试中计算score的时候,有用到norm的操作(score_norm = torch.sum(mu) / torch.sum(test_maps[:, frame_t, :, :])),针对这个我有两个疑惑:
1、假如是一个fake的样本,torch.sum(test_maps[:, frame_t, :, :]应该等于0?那是否需要加一个偏置项来避免除0的情况发生?
2、假如网络训练的很好的话,mu和test_maps[:, frame_t, :, :]应近似相等?那不论是对real还是fake的样本,score_norm应该都近似为1吧?怎么在计算指标的时候对他们进行区分呢
The text was updated successfully, but these errors were encountered: