-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognition.py
68 lines (49 loc) · 1.7 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import cv2
import numpy as np
import os
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml')
cascadePath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
id = 0
# add your names after 'None'
names = ['None']
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video widht
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)
while True:
ret, img = cam.read()
# convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# detecting faces
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(int(minW), int(minH)),
)
for(x, y, w, h) in faces:
# draw rectangle around faces
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
id, confidence = recognizer.predict(gray[y:y+h, x:x+w])
# Check if confidence is less them 100 ==> "0" is perfect match
if (confidence < 100):
id = names[id]
confidence = f" {round(100 - confidence)}%"
else:
id = "unknown"
confidence = f" {round(100 - confidence)}%"
cv2.putText(img, str(id), (x+5, y-5), font, 1, (255, 255, 255), 2)
cv2.putText(img, str(confidence), (x+5, y+h-5),
font, 1, (255, 255, 0), 1)
cv2.imshow('camera', img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
print("\n [INFO] Exiting Program")
cam.release()
cv2.destroyAllWindows()