-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
81 lines (56 loc) · 1.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import time
import torch
import numpy as np
import torchvision.transforms as transforms
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, label, topk=(1,)):
maxk = max(topk)
batch_size = label.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(label.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].flatten().float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_checkpoint(state, iters, tag=''):
if not os.path.exists("./snapshots/"+tag):
os.makedirs("./snapshots/"+tag)
filename = os.path.join("./snapshots/"+tag+"/{}_ckpt_{:04}.pth.tar".format(tag, iters))
torch.save(state, filename)
def data_transforms(args):
MEAN = [0.4913, 0.4821, 0.4465]
STD = [0.2023, 0.1994, 0.2010]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
return train_transform, valid_transform
def time_record(start):
end = time.time()
duration = end - start
hour = duration // 3600
minute = (duration - hour * 3600) // 60
second = duration - hour * 3600 - minute * 60
print('Elapsed time: hour: %d, minute: %d, second: %f' % (hour, minute, second))
def checkdir(directory):
if not os.path.exists(directory):
os.makedirs(directory)