-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathAnalysis_pipeline_regional_comparison.R
296 lines (242 loc) · 11.7 KB
/
Analysis_pipeline_regional_comparison.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#libraries
library(pacehrh)
library(devtools)
library(readxl)
library(plyr)
library(dplyr)
library(ggplot2)
library(stringr)
library(reshape2)
library(viridis)
library(ggrepel)
library(scales)
library(treemapify)
library(RColorBrewer)
date <- Sys.Date()-1
regions <- c("Tigray","Amhara","Oromia","Somali","SNNPR","Addis Ababa","Dire Dawa")
#regions <- c("Tigray", "Affar", "Amhara", "Oromia", "Somali", "Benishangul Gumuz", "SNNPR", "Gambela", "Harari", "Addis Ababa", "Dire Dawa")
remove(Mean_Alloc, Mean_ClinCat, Mean_ServiceCat, Mean_Total, Stats_ClinMonth, Stats_TotClin )
for (GeoName in regions){
print(paste("Loading region",each))
Mean_ServiceCat_temp <- read.csv(paste("results/Mean_ServiceCat_",GeoName,"_",date,".csv",sep=""))
Stats_TotClin_temp <- read.csv(paste("results/Stats_TotClin_",GeoName,"_",date,".csv",sep=""))
Mean_ClinCat_temp <- read.csv(paste("results/Mean_ClinCat_",GeoName,"_",date,".csv",sep=""))
Mean_Total_temp <- read.csv(paste("results/Mean_Total_",GeoName,"_",date,".csv",sep=""))
Stats_ClinMonth_temp <- read.csv(paste("results/Stats_ClinMonth_",GeoName,"_",date,".csv",sep=""))
Mean_Alloc_temp <- read.csv(paste("results/Mean_Alloc_",GeoName,"_",date,".csv",sep=""))
if(!exists('Mean_ServiceCat')){
Mean_ServiceCat <- Mean_ServiceCat_temp
}else{
Mean_ServiceCat <- rbind(Mean_ServiceCat,Mean_ServiceCat_temp)
}
if(!exists('Stats_TotClin')){
Stats_TotClin <- Stats_TotClin_temp
}else{
Stats_TotClin <- rbind(Stats_TotClin,Stats_TotClin_temp)
}
if(!exists('Mean_ClinCat')){
Mean_ClinCat <- Mean_ClinCat_temp
}else{
Mean_ClinCat <- rbind(Mean_ClinCat,Mean_ClinCat_temp)
}
if(!exists('Mean_Total')){
Mean_Total <- Mean_Total_temp
}else{
Mean_Total <- rbind(Mean_Total,Mean_Total_temp)
}
if(!exists('Stats_ClinMonth')){
Stats_ClinMonth <- Stats_ClinMonth_temp
}else{
Stats_ClinMonth <- rbind(Stats_ClinMonth,Stats_ClinMonth_temp)
}
if(!exists('Mean_Alloc')){
Mean_Alloc <- Mean_Alloc_temp
}else{
Mean_Alloc <- rbind( Mean_Alloc, Mean_Alloc_temp)
}
remove(Mean_ServiceCat_temp, Stats_TotClin_temp, Mean_ClinCat_temp, Mean_Total_temp, Stats_ClinMonth_temp, Mean_Alloc_temp)
}
Stats_TotClin_Comprehensive <- subset(Stats_TotClin, DeliveryModel=="Comprehensive")
Stats_TotClin_Basic <- subset(Stats_TotClin, DeliveryModel=="Basic")
Stats_TotClin_Merged <- subset(Stats_TotClin, DeliveryModel=="Merged")
Mean_ServiceCat_Comprehensive <- subset(Mean_ServiceCat, DeliveryModel=="Comprehensive")
Mean_ServiceCat_Basic <- subset(Mean_ServiceCat, DeliveryModel=="Basic")
Mean_ServiceCat_Merged <- subset(Mean_ServiceCat, DeliveryModel=="Merged")
unique(Mean_ServiceCat_Comprehensive$ServiceCat[Mean_ServiceCat_Comprehensive$ClinicalOrNon=="Clinical"])
unique(Mean_ServiceCat_Basic$ServiceCat[Mean_ServiceCat_Basic$ClinicalOrNon=="Clinical"])
unique(Mean_ServiceCat_Merged$ServiceCat[Mean_ServiceCat_Merged$ClinicalOrNon=="Clinical"])
sum(Mean_ServiceCat_Comprehensive$Year==2021)
#Check overhead staff 1 - 6 in comprehensive model
DS <- Mean_ServiceCat_temp %>%
subset(Scenario_ID=="MergedModel")
#Total clinical hours: baseline; o_PopGroowth FALSE + o_Fertility_decr TRUE; o_PopGrowth FALSE + o_Fertility_decr FALSE
years = c(2021, 2025, 2030, 2035)
#specify path to save PDF to
destination = paste("results/total clinical hours ","_",date,".pdf",sep="")
#open PDF
pdf(file=destination)
for (mdl in c("Comprehensive","Basic", "Merged")){
DS <- Stats_TotClin %>%
subset(Year %in% years & DeliveryModel== mdl)
plot <- ggplot(data=DS, aes(x=Geography_dontedit, y=CI50/WeeksPerYr.x,group=Scenario_ID,fill=Scenario_ID)) +
geom_bar(stat="identity",position = "dodge") +
labs(x="Compre",y="Hours per Week per 5,000 Pop",title=mdl) +
guides(x=guide_axis(n.dodge=2)) +
facet_grid(rows = vars(Year))
print(plot)
#turn off PDF plotting
}
dev.off()
#Calculate differences in clinical hours across regions, among models, over years
Stats_TotClin$CI50[Stats_TotClin$Year==2035 & Stats_TotClin$Scenario_ID=="ComprehensiveModel_B"]/Stats_TotClin$WeeksPerYr.x[Stats_TotClin$Year==2035 & Stats_TotClin$Scenario_ID=="ComprehensiveModel_B"]
Stats_TotClin$Geography_dontedit[Stats_TotClin$Year==2035 & Stats_TotClin$Scenario_ID=="ComprehensiveModel_B"]
Stats_TotClin_byyearandmodel <- Stats_TotClin %>%
mutate(WeeklyHrs = CI50/WeeksPerYr.x) %>%
subset(Year==2035) %>%
subset(DeliveryModel == "Comprehensive")
TestDS_agepyramid <- Mean_ServiceCat %>%
subset(ServiceCat=="NCDs")
TestDS_agepyramid$LookUp <- paste(TestDS_agepyramid$Scenario_ID,TestDS_agepyramid$Geography_dontedit)
FirstYearSub <- subset(TestDS_agepyramid,Year==min(TestDS_agepyramid$Year))
TestDS_agepyramid$RatioTo2020 <- TestDS_agepyramid$MeanHrs/FirstYearSub$MeanHrs[match(TestDS_agepyramid$LookUp,FirstYearSub$LookUp)]
ggplot(TestDS_agepyramid,aes(x=Year,y=RatioTo2020,group=Geography_dontedit,linetype=Geography_dontedit))+geom_line()+theme_bw()+
facet_wrap(~Scenario_ID)
aes(label=ServiceCat,subgroup=ServiceCat)
check <- TestDS_agepyramid %>%
subset(Year==2021 & Geography_dontedit=="SNNPR")
Mean_ServiceCat$LookUp <- paste(Mean_$Scenario_ID,Mean_Total$Geography_dontedit)
FirstYearSub <- subset(Mean_Total,Year==min(Mean_Total$Year))
Mean_Total$RatioTo2020 <- Mean_Total$MeanHrs/FirstYearSub$MeanHrs[match(Mean_Total$LookUp,FirstYearSub$LookUp)]
ggplot(Mean_Total,aes(x=Year,y=RatioTo2020,group=Geography_dontedit,linetype=Geography_dontedit))+geom_line()+theme_bw()+
facet_wrap(~Scenario_ID,scales="free_y")
aes(label=ServiceCat,subgroup=ServiceCat)
# age pyramid
ServiceCatHrs <- Mean_ServiceCat_Comprehensive %>%
subset(ClinicalOrNon=="Clinical" & Year == 2021 & Geography_dontedit=="SNNPR") %>%
group_by(Scenario_ID, Geography_dontedit, ServiceCat)
# maxyval <- max(Mean_Total$CI95/Mean_Total$WeeksPerYr)*1.05
# i=1
#
# for(sc in unique(Mean_clinCat$Scenario_ID)){
#
# temp <- subset(Mean_ClinCat,Scenario_ID==sc)
# weeksperyear = scenarios$WeeksPerYr[scenarios$UniqueID==sc]
# hoursperweek = scenarios$HrsPerWeek[scenarios$UniqueID==sc]
# temp$Category <- paste(temp$ClinicalCat)
# temp$Category[temp$ClinicalOrNon=="Clinical"] = paste("Clinical -",temp$Category[temp$ClinicalOrNon=="Clinical"])
# temp$Category[temp$ClinicalOrNon!="Clinical"] = temp$ClinicalOrNon[temp$ClinicalOrNon!="Clinical"]
# temp$Category <- factor(temp$Category,ordered=TRUE,levels=unique(temp$Category))
# temp$Alpha <- 1
# temp$Alpha[temp$ClinicalOrNon!="Clinical"] = .3
# temp <- subset(temp,Year<2036)
#
# plottitle <- scenarios$UniqueID[i]
#
# plot1 <- ggplot()+
# geom_bar(data=temp,aes(x=Year,y=MeanHrs/WeeksPerYr,fill=Category),stat="identity",alpha=.9)+
# geom_line(data=subset(Mean_Total,Scenario_ID==sc),aes(x=Year,y=MeanHrs/WeeksPerYr),size=1.2)+
# geom_point(data=subset(Mean_Total,Scenario_ID==sc),aes(x=Year,y=MeanHrs/WeeksPerYr))+
# geom_errorbar(data=subset(Mean_Total,Scenario_ID==sc),aes(x=Year,ymin=CI05/WeeksPerYr, ymax=CI95/WeeksPerYr), colour="black", width=.3)+
# ylim(0,maxyval)+
# theme_bw()+
# scale_x_continuous(breaks = seq(2021,2035))+
# theme(legend.title=element_blank(),axis.text.x = element_text(angle=-90, vjust = .5, hjust=1))+
# scale_fill_viridis_d()+
# ylab("Hours per Week per 5,000 Pop") + xlab("") + labs(title = plottitle)+
# facet_wrap(~adminName)
#
# print(plot1)
#
#
# #jpeg(paste("results/Weekly workload by Type","_",GeoSelect,"_",date,"_",sc,".jpeg",sep=""), width = 6, height = 4, units = 'in', res = 700)
# #print(plot1)
# #dev.off()
#
# i=i+1
#
# }
scenarios <- read_xlsx("config/model_inputs.xlsx",sheet="Scenarios")
weeksperyear = scenarios$WeeksPerYr[1]
hoursperweek = scenarios$HrsPerWeek[1]
Services <- c("Family planning", "Pregnancy")
#Services <- unique(Mean_ServiceCat$ServiceCat[Mean_ServiceCat$ClinicalOrNon=="Clinical"])
deliverymodels <- factor(unique(Mean_ServiceCat$DeliveryModel), ordered=TRUE, levels = c("Comprehensive", "Basic", "Merged"))
#hours per week on clinical services by service category and region
for (yr in c(2021, 2025, 2030, 2035)){
#specify path to save PDF to
destination = paste("results/Weekly workload by service cat","_",yr,"_",date,".pdf",sep="")
#open PDF
pdf(file=destination)
for (each in Services) {
DS <- Mean_ServiceCat %>%
subset(ServiceCat==each & Year==yr)
plot <- ggplot(data=DS, aes(x=adminName, y=MeanHrs/weeksperyear)) +
geom_col() +
labs(x=yr,y="Hours per Week per 5,000 Pop",title=each) +
guides(x=guide_axis(n.dodge=2)) +
facet_grid(rows = vars(Scenario_ID))
print(plot)
}
#turn off PDF plotting
dev.off()
}
#workload relative to national average by service category and region
for (yr in c(2021, 2035)){
#specify path to save PDF to
destination = paste("results/relative workload by service cat","_",yr,"_",date,".pdf",sep="")
#open PDF
pdf(file=destination)
for (each in Services) {
DS <- Mean_ServiceCat %>%
subset(ServiceCat==each & Year==yr) %>%
group_by(Scenario_ID) %>%
mutate(RelativeWorkload=(MeanHrs/mean(MeanHrs)-1)) %>%
ungroup()
NatMean <- DS %>%
group_by(Scenario_ID) %>%
summarize(NatMean=mean(MeanHrs))
plot <- ggplot(data=DS, aes(x=reorder(Geography_dontedit,RelativeWorkload), y=RelativeWorkload)) +
geom_bar(stat="identity") +
labs(x=yr,y="Workload per 5,000 Pop compared to national average (% diffenrece)",title=paste(each,"Basic: ",round(NatMean$NatMean[1]/mean(DS$WeeksPerYr),1),", Comp: ",round(NatMean$NatMean[2]/mean(DS$WeeksPerYr),1),", Merged: ",round(NatMean$NatMean[3]/mean(DS$WeeksPerYr),1))) +
guides(x=guide_axis(n.dodge=2)) +
facet_grid(rows = vars(ordered(Scenario_ID, levels=c("ComprehensiveModel", "BasicModel", "MergedModel"))))
print(plot)
}
#turn off PDF plotting
dev.off()
} #fix reorder, all three scenarios are lumped together; make Scenario_ID an ordered factor (Comprehensive, Basic, Merged)
#workload relative to national average by service category and region; model facet by year
for (yr in c(2021, 2025, 2030, 2035)){
#specify path to save PDF to
destination = paste("results/relative workload by service cat","_",yr,"_",date,".pdf",sep="")
#open PDF
pdf(file=destination)
for (each in Services) {
DS <- Mean_ServiceCat %>%
subset(ServiceCat==each & Year==yr) %>%
group_by(Scenario_ID) %>%
mutate(RelativeWorkload=(MeanHrs/mean(MeanHrs)-1)) %>%
ungroup()
NatMean <- DS %>%
group_by(Scenario_ID) %>%
summarize(NatMean=mean(MeanHrs))
plot <- ggplot(data=DS, aes(x=reorder(adminName,RelativeWorkload), y=RelativeWorkload)) +
geom_bar(stat="identity") +
labs(x=yr,y="Workload per 5,000 Pop compared to national average (% diffenrece)",title=paste(each,"Basic: ",round(NatMean$NatMean[1]/weeksperyear,1),", Comp: ",round(NatMean$NatMean[2]/weeksperyear,1),", Merged: ",round(NatMean$NatMean[3]/weeksperyear,1))) +
guides(x=guide_axis(n.dodge=2)) +
facet_grid(rows = vars(Scenario_ID))
print(plot)
}
#turn off PDF plotting
dev.off()
} #fix reorder, all three scenarios are lumped together; make Scenario_ID an ordered factor (Comprehensive, Basic, Merged)
# Mean_total plots
urban <- c("Addis Ababa", "Dire Dawa", "Harari")
pastoral <- c("Affar", "Somali", "Gambela","Benishangul Gumuz")
Mean_Total$DevLevel[Mean_Total$adminName %in% urban] = "Urban"
Mean_Total$DevLevel[Mean_Total$adminName %in% pastoral] = "Pastoral"
Mean_Total$DevLevel[is.na(Mean_Total$DevLevel)] = "Agra"
ggplot(Mean_Total,aes(x=Year,y=MeanHrs/WeeksPerYr,group=Scenario_ID,color=Scenario_ID))+geom_line()+theme_bw()+
facet_wrap(~adminName,scales="free_y")
ggplot(Mean_Total,aes(x=Year,y=MeanHrs/WeeksPerYr,group=adminName,linetype=adminName))+geom_line()+theme_bw()+
facet_wrap(~Scenario_ID,scales="free_y")