-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathAnalysis_pipeline_delivery_models.R
292 lines (224 loc) · 14.3 KB
/
Analysis_pipeline_delivery_models.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#libraries
library(readxl)
library(plyr)
library(dplyr)
library(ggplot2)
library(stringr)
library(reshape2)
library(viridis)
library(ggrepel)
library(scales)
library(treemapify)
library(RColorBrewer)
date <- Sys.Date() #User should make sure this matches with date in names of csv files to be read in
scenarios <- read_xlsx("config/model_inputs.xlsx",sheet="Scenarios")
GeoSelect <- scenarios$Geography_dontedit[1] #User should make sure this matches with geography in names of csv files to be read in
#read in summary statistics csv files generated from post-processing steps in "Run_simulations.R"
Mean_ServiceCat <- read.csv(paste("results/Mean_ServiceCat_",GeoSelect,"_",date,".csv",sep=""))
Stats_TotClin <- read.csv(paste("results/Stats_TotClin_",GeoSelect,"_",date,".csv",sep=""))
Mean_ClinCat <- read.csv(paste("results/Mean_ClinCat_",GeoSelect,"_",date,".csv",sep=""))
Mean_Total <- read.csv(paste("results/Mean_Total_",GeoSelect,"_",date,".csv",sep=""))
Stats_ClinMonth <- read.csv(paste("results/Stats_ClinMonth_",GeoSelect,"_",date,".csv",sep=""))
Mean_Alloc <- read.csv(paste("results/Mean_Alloc_",GeoSelect,"_",date,".csv",sep=""))
############################################################################################################################################
#graphic for slide 4 (hours per week on clinical, development, and total work)
#dashed line is actual hours worked per week, according to time and motion study
#solid line is the 95th percentile, simulated
#bars are the simulated expected value for time required, best case with perfect scheduling
maxyval <- max(Mean_Total$CI95/Mean_Total$WeeksPerYr)*1.05
for(sc in unique(scenarios$UniqueID)){
temp <- subset(Mean_ClinCat,Scenario_ID==sc)
weeksperyear = mean(temp$WeeksPerYr[temp$Scenario_ID==sc])
hoursperweek = mean(temp$HrsPerWeek[temp$Scenario_ID==sc])
temp$Category <- paste(temp$ClinicalCat)
temp$Category[temp$ClinicalOrNon=="Clinical"] = paste("Clinical -",temp$Category[temp$ClinicalOrNon=="Clinical"])
temp$Category[temp$ClinicalOrNon!="Clinical"] = temp$ClinicalOrNon[temp$ClinicalOrNon!="Clinical"]
temp$Category <- factor(temp$Category,ordered=TRUE,levels=unique(temp$Category))
temp$Alpha <- 1
temp$Alpha[temp$ClinicalOrNon!="Clinical"] = .3
temp <- subset(temp,Year<2036)
catchment <- scenarios$BaselinePop[scenarios$UniqueID==sc]
ylabel <- paste("Hours per Week per",format(catchment, big.mark = ","),"Pop", sep=" ")
plot1 <- ggplot()+
geom_bar(data=temp,aes(x=Year,y=MeanHrs/WeeksPerYr,fill=Category),stat="identity",alpha=.9)+
geom_line(data=subset(Mean_Total,Scenario_ID==sc),aes(x=Year,y=MeanHrs/WeeksPerYr),linewidth=1.2)+
geom_point(data=subset(Mean_Total,Scenario_ID==sc),aes(x=Year,y=MeanHrs/WeeksPerYr))+
geom_errorbar(data=subset(Mean_Total,Scenario_ID==sc),aes(x=Year,ymin=CI05/WeeksPerYr, ymax=CI95/WeeksPerYr), colour="black", width=.3)+
ylim(0,maxyval)+
theme_bw()+
scale_x_continuous(breaks = seq(2021,2035))+
theme(legend.title=element_blank(),axis.text.x = element_text(angle=-90, vjust = .5, hjust=1))+
scale_fill_viridis_d()+
ylab(ylabel) + xlab("") + labs(title = paste("Time Allocation by Clinical Category",sc))
print(plot1)
jpeg(paste("results/Weekly workload by Type","_",GeoSelect,"_",date,"_",sc,".jpeg",sep=""), width = 6, height = 4, units = 'in', res = 700)
print(plot1)
dev.off()
}
############################################################################################################################################
#graphic from slide 4, but broken down by cadre instead
colorlist <- viridis(6,1,0,1,1,"D")
namelist <- c("MW_hrs","HO_hrs","RN_hrs","EH_hrs","FH_hrs","HEW_hrs")
renamelist <- c("Midwife","Health Off.","Nurse","Env. Health","Fam. Health","HEW")
for(sc in unique(scenarios$UniqueID)){
temp <- subset(Mean_Alloc,Scenario_ID==sc & Cadre!="UN_hrs")
weeksperyear = mean(temp$WeeksPerYr[temp$Scenario_ID==sc])
hoursperweek = mean(temp$HrsPerWeek[temp$Scenario_ID==sc])
temp$colorselect <- colorlist[match(temp$Cadre,namelist)]
temp$rename <- renamelist[match(temp$Cadre,namelist)]
catchment <- scenarios$BaselinePop[scenarios$UniqueID==sc]
ylabel <- paste("Hours per Week per",format(catchment, big.mark = ","),"Pop", sep=" ")
plot8 <- ggplot()+
geom_bar(data=temp,aes(x=Year,y=CI50/WeeksPerYr,group=Cadre, fill=colorselect),color="darkgrey",stat="identity",alpha=.9)+
geom_line(data=subset(Mean_Total,Scenario_ID==sc),aes(x=Year,y=MeanHrs/WeeksPerYr),linewidth=1.2)+
theme_bw()+
scale_x_continuous(breaks = seq(2021,max(temp$Year)))+
theme(legend.title=element_blank(),axis.text.x = element_text(angle=-90, vjust = .5, hjust=1))+
scale_fill_discrete(labels=renamelist)+
ylab(ylabel) + xlab("") + labs(title = paste("Time Allocation by Cadre",sc))
print(plot8)
jpeg(paste("results/Weekly workload by Cadre","_",GeoSelect,"_",date,"_",sc,".jpeg",sep=""), width = 6, height = 4, units = 'in', res = 700)
print(plot8)
dev.off()
}
############################################################################################################################################
# chart for slide 5 (mix of services in a given year)
for(sc in unique(scenarios$UniqueID)){
temp <- subset(Mean_ServiceCat,Year==2021 & Scenario_ID==sc)
temp$ServiceCat[temp$ServiceCat=="MHH and outreach"] = "MHH & Outreach"
temp$ServiceCat[temp$ServiceCat=="Administration"] = "Admin"
temp$ServiceCat[temp$ServiceCat=="Record keeping"] = "Records"
temp$ServiceCat[temp$ServiceCat=="Tuberculosis"] = "TB"
temp$ServiceCat[temp$ServiceCat=="Family planning"] = "FP"
temp$ServiceCat[temp$ServiceCat=="Immunization"] = "RI"
temp$ServiceCat[temp$ServiceCat=="Mental health"] = "Mental"
plot2 <- ggplot(temp,aes(area=MeanHrs,fill=ClinicalOrNon,label=ServiceCat,subgroup=ClinicalOrNon))+
geom_treemap()+geom_treemap_text(color="darkgrey",place="center",size=14)+
geom_treemap_subgroup_border(color="black",size=2.5)+
theme_bw()+theme(legend.position = "none")+
scale_fill_viridis_d()
print(plot2)
temp <- subset(temp,ClinicalOrNon=="Clinical")
plot9 <- ggplot(temp,aes(area=MeanHrs,fill=ServiceCat,label=ServiceCat,subgroup=ServiceCat))+
geom_treemap()+geom_treemap_text(color="black",place="center",size=14)+
geom_treemap_subgroup_border(color="black",size=2.5)+
theme_bw()+theme(legend.position = "none")+
scale_fill_viridis_d()
print(plot9)
jpeg(paste("results/Time Mix 2021","_",GeoSelect,"_",date,"_",sc,".jpeg",sep=""), width = 5, height = 4, units = 'in', res = 700)
print(plot2)
print(plot9)
dev.off()
}
#line chart for slide 5 - service mix change over time
plotsub <- subset(Mean_ServiceCat,ClinicalOrNon=="Clinical" & Year<2036)
tempyr1 <- subset(plotsub,Year==2021)
plotsub$Lookup <- paste(plotsub$Scenario_ID,plotsub$ServiceCat)
tempyr1$Lookup <- paste(tempyr1$Scenario_ID,tempyr1$ServiceCat)
plotsub$RatioTo1 <- plotsub$MeanHrs/tempyr1$MeanHrs[match(plotsub$Lookup,tempyr1$Lookup)]
plotsub$ServiceCat <- as.factor(plotsub$ServiceCat)
ymaxdiff = max(plotsub$RatioTo1) - 1
yplotmax = (ymaxdiff+1)*1.02
yplotmin = (1-ymaxdiff)*1.02
for(sc in unique(scenarios$UniqueID)){
temp <- subset(plotsub,Scenario_ID==sc)
#make label positions
LastYear<-subset(temp,Year==max(temp$Year))
temp$RatioLastYr <- LastYear$RatioTo1[match(temp$ServiceCat,LastYear$ServiceCat)]
temp$RatioLastYr[temp$ServiceCat=="Mental health"] = temp$RatioLastYr[temp$ServiceCat=="Mental health"] #separate overlapping labels
temp$RatioLastYr[temp$ServiceCat=="First Aid"] = temp$RatioLastYr[temp$ServiceCat=="First Aid"] #separate overlapping labels
temp$RatioLastYr[temp$ServiceCat=="Sick child"] = temp$RatioLastYr[temp$ServiceCat=="Sick child"] #separate overlapping labels
temp$RatioLastYr[temp$ServiceCat=="Malaria"] = temp$RatioLastYr[temp$ServiceCat=="Malaria"] #separate overlapping labels
temp$RatioLastYr[temp$ServiceCat=="Pregnancy"] = temp$RatioLastYr[temp$ServiceCat=="Pregnancy"] #separate overlapping labels
temp$RatioLastYr[temp$ServiceCat=="Nutrition"] = temp$RatioLastYr[temp$ServiceCat=="Nutrition"] #separate overlapping labels
temp$RatioLastYr[temp$ServiceCat=="Immunization"] = temp$RatioLastYr[temp$ServiceCat=="Immunization"] #separate overlapping labels
temp$RatioLastYr[temp$ServiceCat=="NTDs (LF)"] = temp$RatioLastYr[temp$ServiceCat=="NTDs (LF)"] #separate overlapping labels
temp$RatioLastYr[temp$ServiceCat=="HIV"] = temp$RatioLastYr[temp$ServiceCat=="HIV"] #separate overlapping labels
temp$Label <- ""
temp$Label[temp$Year==max(temp$Year)] = paste(temp$ServiceCat[temp$Year==max(temp$Year)],", ",round(temp$RatioLastYr[temp$Year==max(temp$Year)],1),sep="")
plot3 <- ggplot(temp,aes(x=Year,y=RatioTo1,group=ServiceCat))+geom_line(aes(color=ServiceCat),size=1.1)+
geom_hline(yintercept = 1,color="black",linetype="dashed")+
theme_bw()+xlab("")+ylab("Ratio to Baseline Year")+theme(legend.position="none",axis.text.x = element_text(angle=-90, vjust = .5, hjust=1))+
scale_color_discrete()+
geom_text_repel(aes(x=max(Year)+.2,y=RatioLastYr,label=Label),color="darkgrey", max.overlaps =200, size=2.8,hjust=0)+
scale_x_continuous(breaks = seq(2021,2035),limits=c(2021,max(temp$Year)+6)) +
scale_y_continuous(limits = c(yplotmin,yplotmax))+labs(title = paste(sc))
print(plot3)
jpeg(paste("results/Time Mix Change Over Time","_",GeoSelect,"_",date,"_",sc,".jpeg",sep=""), width = 4.1, height = 3.5, units = 'in', res = 700)
print(plot3)
dev.off()
}
############################################################################################################################################
#Seasonality impact analysis
Stats_ClinMonth$FTE50 <- round(Stats_ClinMonth$CI50/Stats_ClinMonth$HrsPerWeek,2)
Stats_ClinMonth$FTE95 <- round(Stats_ClinMonth$CI95/Stats_ClinMonth$HrsPerWeek,2)
Monthly_Avg <- ddply(Stats_ClinMonth,.(Scenario_ID,Year),summarize,MonthlyMean=mean(CI50))
Stats_ClinMonth$MonthlyAvg <- 0
Stats_ClinMonth$MonthlyAvg = Monthly_Avg$MonthlyMean[match(
paste(Stats_ClinMonth$Year,Stats_ClinMonth$Scenario_ID),paste(Monthly_Avg$Year,Monthly_Avg$Scenario_ID))]
Stats_ClinMonth$CI05 <- Stats_ClinMonth$CI05/(Stats_ClinMonth$WeeksPerYr/12)
Stats_ClinMonth$CI95 <- Stats_ClinMonth$CI95/(Stats_ClinMonth$WeeksPerYr/12)
Stats_ClinMonth$CI50 <- Stats_ClinMonth$CI50/(Stats_ClinMonth$WeeksPerYr/12)
Stats_ClinMonth$MonthlyAvg <- Stats_ClinMonth$MonthlyAvg/(Stats_ClinMonth$WeeksPerYr/12)
ps <- subset(Stats_ClinMonth,Year==2021)
plot6 <- ggplot(ps,aes(x=Month,y=CI50/MonthlyAvg,group=Scenario_ID,color=Scenario_ID,fill=Scenario_ID)) +
geom_line(aes(x=Month,y=CI50/MonthlyAvg))+
theme_bw() + ylab("Ratio to Avg.")+ labs(title="Seasonality of Clinical Work (2021)") +
geom_ribbon(aes(ymin=CI05/MonthlyAvg,ymax=CI95/MonthlyAvg),alpha=.3) +
geom_hline(yintercept=1,color="black",linetype="dashed")+
scale_x_continuous(breaks=seq(1,12))+theme(legend.title=element_blank(),legend.position = "bottom")+
scale_y_continuous(labels=comma,limits=c(.5,1.5))
print(plot6)
jpeg(paste("results/Seasonality effect on clinical time","_",date,"_2021AllScenarios",".jpeg"), width = 5, height = 3.5, units = 'in', res = 700)
print(plot6)
dev.off()
ps <- subset(Stats_ClinMonth,Year==2035)
plot7 <- ggplot(ps,aes(x=Month,y=CI50/MonthlyAvg,group=Scenario_ID,color=Scenario_ID,fill=Scenario_ID)) +
geom_line(aes(x=Month,y=CI50/MonthlyAvg))+
theme_bw() + ylab("Ratio to Avg.")+ labs(title="Seasonality of Clinical Work (2035)") +
geom_ribbon(aes(ymin=CI05/MonthlyAvg,ymax=CI95/MonthlyAvg),alpha=.3) +
geom_hline(yintercept=1,color="black",linetype="dashed")+
scale_x_continuous(breaks=seq(1,12))+theme(legend.title=element_blank(),legend.position = "bottom")+
scale_y_continuous(labels=comma,limits=c(.5,1.5))
print(plot7)
jpeg(paste("results/Seasonality effect on clinical time","_",date,"_2035AllScenarios",".jpeg"), width = 5, height = 3.5, units = 'in', res = 700)
print(plot7)
dev.off()
for(sc in unique(scenarios$UniqueID)){
temp <- subset(Stats_ClinMonth,Scenario_ID==sc)
temp <- subset(temp,Year==min(temp$Year) | Year==max(temp$Year))
#calculate FTE need differences
# temp$FTE50 <- round(temp$CI50/temp$WeeksPerYr/temp$HrsPerWeek,2)
# temp$FTE95 <- round(temp$CI95/temp$WeeksPerYr/temp$HrsPerWeek,2)
#
mean(subset(temp,Scenario_ID==sc & Year==min(temp$Year))$FTE50) #calculated on monthly average, expected value 2021
max(subset(temp,Scenario_ID==sc & Year==min(temp$Year))$FTE50) #calculated on monthly maximum, expected value 2021
max(subset(temp,Scenario_ID==sc & Year==min(temp$Year))$FTE95) #calculated on monthly maximum, 95th CI value 2021
mean(subset(temp,Scenario_ID==sc & Year==max(temp$Year))$FTE50) #calculated on monthly average, expected value 2035
max(subset(temp,Scenario_ID==sc & Year==max(temp$Year))$FTE50) #calculated on monthly maximum, expected value 2035
max(subset(temp,Scenario_ID==sc & Year==max(temp$Year))$FTE95) #calculated on monthly maximum, 95th CI value 2035
#monthly_avg_2021 <- mean(subset(temp,Year==2021)$CI50)
#monthly_avg_2035 <- mean(subset(temp,Year==2035)$CI50)
#temp$MonthlyAvg <- 0
#temp$MonthlyAvg[temp$Year==2021] = monthly_avg_2021
#temp$MonthlyAvg[temp$Year==2035] = monthly_avg_2035
#Normalize everything to hours per week
#temp$CI05 <- temp$CI05/(temp$WeeksPerYr/12)
#temp$CI95 <- temp$CI95/(temp$WeeksPerYr/12)
#temp$CI50 <- temp$CI50/(temp$WeeksPerYr/12)
#temp$MonthlyAvg <- temp$MonthlyAvg/(temp$WeeksPerYr/12)
ggplot(temp,aes(x=Month,y=CI50,group=as.factor(Year)))+theme_bw()+ylab("Clinical Hours per Week")+
geom_ribbon(aes(ymin=CI05,ymax=CI95,fill=as.factor(Year)),alpha=.3)+geom_line(aes(color=as.factor(Year)))+
scale_x_continuous(breaks=seq(1,12))+theme(legend.title=element_blank())+
scale_y_continuous(labels=comma) + facet_wrap(~Year)
temp <- subset(temp,Year==2021)
plot5 <- ggplot(temp,aes(x=Month,y=CI50/MonthlyAvg))+theme_bw()+ylab("Ratio of Clinical Time: Monthly / Average") +
geom_hline(yintercept=1,color="black",linetype="dashed")+
geom_ribbon(aes(ymin=CI05/MonthlyAvg,ymax=CI95/MonthlyAvg),alpha=.3,fill="darkblue")+geom_line(color="darkblue")+
scale_x_continuous(breaks=seq(1,12))+theme(legend.title=element_blank())+
scale_y_continuous(labels=scales::number_format(accuracy = 0.1),limits=c(.5,1.5))
print(plot5)
jpeg(paste("results/Seasonality effect on clinical time","_",date,"_",sc,".jpeg"), width = 5*4/5, height = 4*4/5, units = 'in', res = 700)
print(plot5)
dev.off()
}