forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaiss.py
366 lines (290 loc) · 10.9 KB
/
faiss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the BSD+Patents license found in the
# LICENSE file in the root directory of this source tree.
#@nolint
# not linting this file because it imports * form swigfaiss, which
# causes a ton of useless warnings.
import numpy as np
import sys
import inspect
import pdb
# we import * so that the symbol X can be accessed as faiss.X
try:
from swigfaiss_gpu import *
except ImportError as e:
if e.args[0] != 'ImportError: No module named swigfaiss_gpu':
# swigfaiss_gpu is there but failed to load: Warn user about it.
sys.stderr.write("Failed to load GPU Faiss: %s\n" % e.args[0])
sys.stderr.write("Faiss falling back to CPU-only.\n")
from swigfaiss import *
##################################################################
# The functions below add or replace some methods for classes
# this is to be able to pass in numpy arrays directly
# The C++ version of the classnames will be suffixed with _c
##################################################################
def replace_method(the_class, name, replacement, ignore_missing=False):
try:
orig_method = getattr(the_class, name)
except AttributeError:
if ignore_missing:
return
raise
if orig_method.__name__ == 'replacement_' + name:
# replacement was done in parent class
return
setattr(the_class, name + '_c', orig_method)
setattr(the_class, name, replacement)
def handle_Clustering():
def replacement_train(self, x, index):
assert x.flags.contiguous
n, d = x.shape
assert d == self.d
self.train_c(n, swig_ptr(x), index)
replace_method(Clustering, 'train', replacement_train)
handle_Clustering()
def handle_Quantizer(the_class):
def replacement_train(self, x):
n, d = x.shape
assert d == self.d
self.train_c(n, swig_ptr(x))
def replacement_compute_codes(self, x):
n, d = x.shape
assert d == self.d
codes = np.empty((n, self.code_size), dtype='uint8')
self.compute_codes_c(swig_ptr(x), swig_ptr(codes), n)
return codes
def replacement_decode(self, codes):
n, cs = codes.shape
assert cs == self.code_size
x = np.empty((n, self.d), dtype='float32')
self.decode_c(swig_ptr(codes), swig_ptr(x), n)
return x
replace_method(the_class, 'train', replacement_train)
replace_method(the_class, 'compute_codes', replacement_compute_codes)
replace_method(the_class, 'decode', replacement_decode)
handle_Quantizer(ProductQuantizer)
handle_Quantizer(ScalarQuantizer)
def handle_Index(the_class):
def replacement_add(self, x):
assert x.flags.contiguous
n, d = x.shape
assert d == self.d
self.add_c(n, swig_ptr(x))
def replacement_add_with_ids(self, x, ids):
n, d = x.shape
assert d == self.d
assert ids.shape == (n, ), 'not same nb of vectors as ids'
self.add_with_ids_c(n, swig_ptr(x), swig_ptr(ids))
def replacement_train(self, x):
assert x.flags.contiguous
n, d = x.shape
assert d == self.d
self.train_c(n, swig_ptr(x))
def replacement_search(self, x, k):
n, d = x.shape
assert d == self.d
distances = np.empty((n, k), dtype=np.float32)
labels = np.empty((n, k), dtype=np.int64)
self.search_c(n, swig_ptr(x),
k, swig_ptr(distances),
swig_ptr(labels))
return distances, labels
def replacement_remove_ids(self, x):
if isinstance(x, IDSelector):
sel = x
else:
assert x.ndim == 1
sel = IDSelectorBatch(x.size, swig_ptr(x))
return self.remove_ids_c(sel)
def replacement_reconstruct(self, key):
x = np.empty(self.d, dtype=np.float32)
self.reconstruct_c(key, swig_ptr(x))
return x
def replacement_reconstruct_n(self, n0, ni):
x = np.empty((ni, self.d), dtype=np.float32)
self.reconstruct_n_c(n0, ni, swig_ptr(x))
return x
def replacement_update_vectors(self, keys, x):
n = keys.size
assert keys.shape == (n, )
assert x.shape == (n, self.d)
self.update_vectors_c(n, swig_ptr(keys), swig_ptr(x))
def replacement_range_search(self, x, thresh):
n, d = x.shape
assert d == self.d
res = RangeSearchResult(n)
self.range_search_c(n, swig_ptr(x), thresh, res)
# get pointers and copy them
lims = rev_swig_ptr(res.lims, n + 1).copy()
nd = int(lims[-1])
D = rev_swig_ptr(res.distances, nd).copy()
I = rev_swig_ptr(res.labels, nd).copy()
return lims, D, I
replace_method(the_class, 'add', replacement_add)
replace_method(the_class, 'add_with_ids', replacement_add_with_ids)
replace_method(the_class, 'train', replacement_train)
replace_method(the_class, 'search', replacement_search)
replace_method(the_class, 'remove_ids', replacement_remove_ids)
replace_method(the_class, 'reconstruct', replacement_reconstruct)
replace_method(the_class, 'reconstruct_n', replacement_reconstruct_n)
replace_method(the_class, 'range_search', replacement_range_search)
replace_method(the_class, 'update_vectors', replacement_update_vectors,
ignore_missing=True)
def handle_VectorTransform(the_class):
def apply_method(self, x):
assert x.flags.contiguous
n, d = x.shape
assert d == self.d_in
y = np.empty((n, self.d_out), dtype=np.float32)
self.apply_noalloc(n, swig_ptr(x), swig_ptr(y))
return y
def replacement_reverse_transform(self, x):
n, d = x.shape
assert d == self.d_out
y = np.empty((n, self.d_in), dtype=np.float32)
self.reverse_transform_c(n, swig_ptr(x), swig_ptr(y))
return y
def replacement_vt_train(self, x):
assert x.flags.contiguous
n, d = x.shape
assert d == self.d_in
self.train_c(n, swig_ptr(x))
replace_method(the_class, 'train', replacement_vt_train)
# apply is reserved in Pyton...
the_class.apply_py = apply_method
replace_method(the_class, 'reverse_transform',
replacement_reverse_transform)
def handle_AutoTuneCriterion(the_class):
def replacement_set_groundtruth(self, D, I):
if D:
assert I.shape == D.shape
self.nq, self.gt_nnn = I.shape
self.set_groundtruth_c(
self.gt_nnn, swig_ptr(D) if D else None, swig_ptr(I))
def replacement_evaluate(self, D, I):
assert I.shape == D.shape
assert I.shape == (self.nq, self.nnn)
return self.evaluate_c(swig_ptr(D), swig_ptr(I))
replace_method(the_class, 'set_groundtruth', replacement_set_groundtruth)
replace_method(the_class, 'evaluate', replacement_evaluate)
def handle_ParameterSpace(the_class):
def replacement_explore(self, index, xq, crit):
assert xq.shape == (crit.nq, index.d)
ops = OperatingPoints()
self.explore_c(index, crit.nq, swig_ptr(xq),
crit, ops)
return ops
replace_method(the_class, 'explore', replacement_explore)
this_module = sys.modules[__name__]
for symbol in dir(this_module):
obj = getattr(this_module, symbol)
# print symbol, isinstance(obj, (type, types.ClassType))
if inspect.isclass(obj):
the_class = obj
if issubclass(the_class, Index):
handle_Index(the_class)
if issubclass(the_class, VectorTransform):
handle_VectorTransform(the_class)
if issubclass(the_class, AutoTuneCriterion):
handle_AutoTuneCriterion(the_class)
if issubclass(the_class, ParameterSpace):
handle_ParameterSpace(the_class)
def index_cpu_to_gpu_multiple_py(resources, index, co=None):
"""builds the C++ vectors for the GPU indices and the
resources. Handles the common case where the resources are assigned to
the first len(resources) GPUs"""
vres = GpuResourcesVector()
vdev = IntVector()
for i, res in enumerate(resources):
vdev.push_back(i)
vres.push_back(res)
return index_cpu_to_gpu_multiple(vres, vdev, index, co)
def vector_float_to_array(v):
a = np.empty(v.size(), dtype='float32')
memcpy(swig_ptr(a), v.data(), 4 * v.size())
return a
class Kmeans:
def __init__(self, d, k, niter=25, verbose=False, spherical = False):
self.d = d
self.k = k
self.cp = ClusteringParameters()
self.cp.niter = niter
self.cp.verbose = verbose
self.cp.spherical = spherical
self.centroids = None
def train(self, x):
assert x.flags.contiguous
n, d = x.shape
assert d == self.d
clus = Clustering(d, self.k, self.cp)
if self.cp.spherical:
self.index = IndexFlatIP(d)
else:
self.index = IndexFlatL2(d)
clus.train(x, self.index)
centroids = vector_float_to_array(clus.centroids)
self.centroids = centroids.reshape(self.k, d)
self.obj = vector_float_to_array(clus.obj)
return self.obj[-1]
def assign(self, x):
assert self.centroids is not None, "should train before assigning"
index = IndexFlatL2(self.d)
index.add(self.centroids)
D, I = index.search(x, 1)
return D.ravel(), I.ravel()
def kmin(array, k):
"""return k smallest values (and their indices) of the lines of a
float32 array"""
m, n = array.shape
I = np.zeros((m, k), dtype='int64')
D = np.zeros((m, k), dtype='float32')
ha = float_maxheap_array_t()
ha.ids = swig_ptr(I)
ha.val = swig_ptr(D)
ha.nh = m
ha.k = k
ha.heapify()
ha.addn(n, swig_ptr(array))
ha.reorder()
return D, I
def kmax(array, k):
"""return k largest values (and their indices) of the lines of a
float32 array"""
m, n = array.shape
I = np.zeros((m, k), dtype='int64')
D = np.zeros((m, k), dtype='float32')
ha = float_minheap_array_t()
ha.ids = swig_ptr(I)
ha.val = swig_ptr(D)
ha.nh = m
ha.k = k
ha.heapify()
ha.addn(n, swig_ptr(array))
ha.reorder()
return D, I
def rand(n, seed=12345):
res = np.empty(n, dtype='float32')
float_rand(swig_ptr(res), n, seed)
return res
def lrand(n, seed=12345):
res = np.empty(n, dtype='int64')
long_rand(swig_ptr(res), n, seed)
return res
def randn(n, seed=12345):
res = np.empty(n, dtype='float32')
float_randn(swig_ptr(res), n, seed)
return res
def eval_intersection(I1, I2):
""" size of intersection between each line of two result tables"""
n = I1.shape[0]
assert I2.shape[0] == n
k1, k2 = I1.shape[1], I2.shape[1]
ninter = 0
for i in range(n):
ninter += ranklist_intersection_size(
k1, swig_ptr(I1[i]), k2, swig_ptr(I2[i]))
return ninter
def normalize_L2(x):
fvec_renorm_L2(x.shape[1], x.shape[0], swig_ptr(x))